Skip to main content

Desalination: Concept and System Components

Abstract

In the next decade, about 70% of the world’s population is likely to face water scarcity. This is rapidly becoming critical in coastal areas, arid/semi-arid regions and island countries. This chapter presents an overview of the desalination concept and describes the basic aspects of desalination system design, including desalination techniques, energy demand and supply, and environmental issues pertinent to desalination. The availability of vast seawater and brackish water resources and evolving desalination techniques and system design appear to provide ample opportunities to address global water scarcity. Furthermore, the rapidly changing energy conservation and renewable energy technologies will also support the emergence of environmentally sustainable small-scale and decentralized desalination infrastructure networks for densely populated urban areas, as well as rural and remote areas. However, there remains an urgent need to implement desalination plant permitting and monitoring systems to balance the cost-effectiveness of evolving technologies with environmental sustainability.

Keywords

  • Desalination
  • Water and energy nexus
  • Renewable energy
  • Environmental management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Natural organic matter

References

  1. UNDESA, International decade for action ‘Water for Life’ 2005–2015, United Nations Department of Economic and Social Affairs (UNDESA, 2015) (http://www.un.org/waterforlifedecade/scarcity.shtml)

  2. U.S. Bureau of Reclamation, Desalting Handbook for Planners, Desalination and Water Purification Research and Development Program Report no (U.S. Department of the Interior, Bureau of Reclamation, Technical service center, 2003), p. 72

    Google Scholar 

  3. T. Younos, Desalination: Supplementing freshwater supplies - approaches and challenges. J. Contemp. Water Res. Educ. 132, 1–2 (2005)

    CrossRef  Google Scholar 

  4. J.A. Cotruvo, Water desalination processes and associated health and environmental issues, (Water Condition & Purification International, 2005) January 2005

    Google Scholar 

  5. WHO, Guidelines for drinking-water quality. Vol. 2. Health criteria and other supporting information, World Health Organization. Geneva 101, 2 (1984)

    Google Scholar 

  6. WHO, Safe drinking-water from desalination. (World Health Organization, 2011) WHO/HSE/WSH/11.03, (https://apps.who.int/iris/handle/10665/70621)

  7. USEPA ,Secondary drinking water standards: Guidance for nuisance chemicals. United States Environmental Protection Agency (EPA). (2017) (https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisancechemicals)

  8. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S. Kang, The state of desalination and brine production: A global outlook. Sci. Total Environ. 657, 1343–1356 (2019)

    CrossRef  CAS  Google Scholar 

  9. T. Younos, K.E. Tulou, Overview of desalination techniques. J. Contemp. Water Res. Educ. 132, 3–10 (2005)

    CrossRef  Google Scholar 

  10. AWWA, Manual of Water Supply Practices: Reverse Osmosis and Nanofiltration, vol M46 (American Water Works Association, AWWA, 1999), p. 173

    Google Scholar 

  11. S.J. Duranceau, Membrane processes for small systems compliance with the safe drinking water act, 3rd NSF Intl. Symp. on Small Drinking Water and Wastewater Systems, April 22–25, 2001, (Washington D.C., USA, 2001)

    Google Scholar 

  12. J. Krukowski, Opening the black box: Regulations and recycling drive use of membrane technologies. Pollut. Eng. 33, 20–25 (2001)

    CAS  Google Scholar 

  13. J.E. Miller, Review of water resources and desalination technologies, Sandia National Laboratories, SAND 2003–0800, U.S. Department of Energy, U.S. Department of Commerce (2003) (https://prod-ng.sandia.gov/techlib-noauth/accesscontrol. cgi/2003/030800.pdf)

  14. R.E. Brunner, Electrodialysis in Saline Water Processing. Hans-Gunter Heitmann (VCH Verlagsgesellschaft, Federal Republic of Germany, 1990), pp. 197–217

    Google Scholar 

  15. AMTA, Electrodialysis reversal desalination, (American Membrane Technology Association 2018) (https://www.amtaorg.com/electrodialysis-reversal-desalination)

  16. NAP, Desalination: A National Perspective, Committee on Advancing Desalination Technology Water Science and Technology Board, National Research Council (The National Academies Press, Washington, D.C., 2008). http://nap.edu/12184

    Google Scholar 

  17. Lenntech, Electrodialysis, (Lenntech BV 2018) (https://www.lenntech.com/electrodialysis.htm)

  18. J. Lee, T. Younos, Sustainability strategies at the water-energy nexus: Renewable energy and decentralized infrastructure. J. Am. Water Works Ass. 110, 32–39 (2018)

    CrossRef  Google Scholar 

  19. T. Younos, K.E. Tulou, Desalination: Energy needs, consumption and sources. J. Contemp. Water Res. Educ. 132, 27–38 (2005)

    CrossRef  Google Scholar 

  20. DESWARE, (Encyclopedia of Desalination and Water Resources, 2013) (http://www.desware.net/Energy-Requirements-Desalination-Processes.aspx)

  21. H. Shih, T. Shih, Utilization of waste heat in the desalination process. Desalination 204, 464–470 (2007)

    CrossRef  CAS  Google Scholar 

  22. T.M. Manth, E. Gabor, J. Oklejas, Minimizing RO energy consumption under variable conditions of operation. Desalination 157, 9–21 (2003)

    CrossRef  CAS  Google Scholar 

  23. M.A. Darwish, N. Al-Najem, Cogeneration power desalting plants in Kuwait: A new trend with reverse osmosis desalters. Desalination 128, 17–33 (2000)

    CrossRef  CAS  Google Scholar 

  24. T.C. Hung, M.S. Shai, B.S. Pei, Cogeneration approach for near shore internal combustion power plants applied to seawater desalination. Energy Convers. Manag. 44, 1259–1273 (2003)

    CrossRef  CAS  Google Scholar 

  25. B. Alspach, I. Watson, Sea change. Civil Eng. 74, 70–75 (2004)

    Google Scholar 

  26. E. Cardona, S. Culotta, A. Piacentino, Energy saving with MSF-RO series desalination plants. Desalination 153, 167–171 (2002)

    CrossRef  Google Scholar 

  27. B. Van der Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: Overview of process evolutions in seawater desalination. Desalination 143, 207–218 (2002)

    CrossRef  Google Scholar 

  28. T. Younos, The feasibility of using desalination to supplement drinking water supplies in Eastern Virginia (U.S.), VWRRC Special Report SR25–2004, (Virginia Water Resources Research Center, Virginia Tech, Blacksburg, 2004)

    Google Scholar 

  29. S. Nisan, G. Caruso, J.R. Humphries, G. Mini, A.N. Naviglio, B. Bielak, O. Auuar Alonso, N. Martins, L. Volpi, Seawater desalination with nuclear and other energy sources: The EURODESAL project. Nuclear Eng. Design. 221, 251–275 (2002)

    CrossRef  Google Scholar 

  30. IAEA, New technologies for seawater desalination using nuclear energy, (International Atomic Energy Agency, 2015) IAEA-TECDOC-1753

    Google Scholar 

  31. M.A. Darwish, N. Al-Najem, Energy consumption by multi-stage flash and reverse osmosis desalters. Appl. Therm. Energy 20, 399–416 (2000)

    CrossRef  CAS  Google Scholar 

  32. ENGINEERS Australia, (World’s first wave-powered desalination plant now operational in Perth 2018) (https://portal.engineersaustralia.org.au/news/worlds-first-wave-powered-desalination-plant-now-operational-perth)

  33. M.M. Abou-Rayan, B. Dejbedjian, Advances in desalination technologies: Solar desalination, in Potable water – Emerging global problems and solutions, the handbook of environmental chemistry, ed. by T. Younos, C. A. Grady, vol. 30, (Springer, New York, 2014)

    Google Scholar 

  34. J.F. Manwell, J.G. McGowan, Recent renewable energy driven desalination system research and development in North America. Desalination 94, 229–241 (1994)

    CrossRef  CAS  Google Scholar 

  35. D.G. Harrison, G.E. Ho, K. Mathew, Desalination using renewable energy in Australia. Renew. Energy 8, 509–513 (1996)

    CrossRef  CAS  Google Scholar 

  36. S. Kalogirou, Parabolic-trough collectors. Appl. Energy 60, 65–68 (1998)

    CrossRef  CAS  Google Scholar 

  37. L. García-Rodríguez, Seawater desalination driven by renewable energies: A review. Desalination 143, 103–113 (2002)

    CrossRef  Google Scholar 

  38. B. Bouchekima, A solar desalination plant for domestic water needs in arid areas of South Algeria. Desalination 153, 65–69 (2002)

    CrossRef  Google Scholar 

  39. M. Thomson, D. Infield, A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination 153, 1–8 (2002)

    CrossRef  Google Scholar 

  40. T. Younos, Environmental issues of desalination. J. Contemp. Water Res. Educ. 132, 11–18 (2005)

    CrossRef  Google Scholar 

  41. T. Younos, Desalination: Permits and regulatory requirements. J. Contemp. Water Res. Educ. 132, 19–26 (2005)

    CrossRef  Google Scholar 

  42. B.K. Pramanik, S. Li, V. Jegatheesan, A review on the management and treatment of brine solutions. Environ. Sci.: Water Res. Technol. 3, 625–658 (2017)

    CAS  Google Scholar 

  43. P. Mahi, Developing environmentally acceptable desalination projects. Desalination 138, 167–172 (2001)

    CrossRef  CAS  Google Scholar 

  44. N.X. Tsiourtis, Desalination and the environment. Desalination 141, 223–236 (2001)

    CrossRef  CAS  Google Scholar 

  45. T. Hoepner, S. Lattemann, Chemical impacts from seawater desalination plants-a case study of the northern Red Sea. Desalination 152, 133–140 (2002)

    CrossRef  Google Scholar 

  46. M.C. Mickley, Membrane concentrate disposal: Practices and regulation, desalination and water purification research and development program, Report No. 123, (U.S. Department of Interior, Bureau of Reclamation, 2006) (https://www.usbr.gov/research/dwpr/reportpdfs/report123.pdf)

  47. Charisiadis, C. (2018), Brine zero liquid discharge (ZLD) fundamentals and design,. LENNTECH. (https://www.lenntech.com/Data-sheets/ZLD-booklet-for-Lenntech-site-min-L.pdf)

    Google Scholar 

  48. T. Younos, The economics of desalination. J. Contemp. Water Res. Educ. 132, 39–45 (2005)

    CrossRef  Google Scholar 

  49. IAEA, Desalination Economic Evaluation Program, (DEEP-3.0) User’s manual, Computer Manual Series No. 19. (International Atomic Energy Agency, Vienna, 2006) (https://www-pub.iaea.org/MTCD/Publications/PDF/CMS-19_web.pdf)

  50. U.S. Bureau of Land Reclamation, WT Cost II Modeling (Desalination and Water Purification Research and Development Program, Report No, 2008), p. 130. https://www.usbr.gov/research/dwpr/reportpdfs/report130.pdf

    Google Scholar 

  51. M. Elimelech, W.A. Phillip, The future of seawater desalination: Energy, technology, and the environment. Science 333, 712–717 (2011)

    CrossRef  CAS  Google Scholar 

  52. U.S. Department of Energy, Bandwidth study on energy use and potential energy savings opportunities in U.S. seawater desalination systems, (U.S. Department of Energy, Advanced Manufacturing Office, 2017) Contract No. DE-AC02-05CH11231. (https://www.energy.gov/sites/prod/files/2015/08/f26/petroleum_refining_bandwidth_report.pdf)

  53. California Desalination Planning Handbook, (California State University, Sacramento, 2008) (https://water.ca.gov/LegacyFiles/desalination/docs/Desal_Handbook.pdf)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamim Younos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younos, T., Lee, J. (2020). Desalination: Concept and System Components. In: Saji, V.S., Meroufel, A.A., Sorour, A.A. (eds) Corrosion and Fouling Control in Desalination Industry. Springer, Cham. https://doi.org/10.1007/978-3-030-34284-5_1

Download citation