Abstract
Throughout this paper, our main idea is to explore different classical questions arising in Utility Theory, with a particular attention to those that lean on numerical representations of preference orderings. We intend to present a survey of open questions in that discipline, also showing the state-of-art of the corresponding literature.
In honour of G. B. Mehta on occasion of his 75th birthday.
Also dedicated to the memory of our colleague Gerhard Herden.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
This property is also known as the translation-invariance of the total order \(\precsim \) as regards the binary operation \(\circ \). Notice that, in particular, a totally ordered semigroup is always cancellative, namely \(s \circ u = t \circ u \Leftrightarrow s = t \Leftrightarrow u \circ s = u \circ t \ \ (s,t,u \in S).\)
- 3.
Despite we are working with totally ordered semigroups, it can be proved that we could actually be working with a totally preordered semigroup, where \(\precsim \) is a total preorder but not necessarily a linear order (i.e.: the binary relation \(\precsim \) could fail to be antisymmetric). When this happens, we might pass to be working with a quotient space \(S/\sim \) whose elements are the indifference classes of the elements of S with respect to \(\sim \). That is, given \(s \in S\), its corresponding class is the set \(\lbrace t \in S: t \sim s \rbrace \). Provided that there is a compatibility between the total preorder \(\precsim \) and the binary operation \(\circ \) such that \(s \precsim t \Leftrightarrow s \circ u \precsim t \circ u \Leftrightarrow u \circ s \precsim u \circ t\) holds for every \(s,t,u \in S\), it is easy to see that \(S/\sim \) inherits a structure of totally ordered semigroup by considering in a natural way that the binary operation \(\circ \) as well as \( \precsim \) directly act on the indifference classes that \(\sim \) induces on S.
By this reason, in what follows we will be working with totally ordered semigroups, instead of just totally preordered semigroups, unless otherwise stated.
- 4.
In this setting, a mapping f with these properties is said to be an additive utility function.
- 5.
Here on \(S \times S\) we will consider the product topology coming from \(\tau \) on S.
- 6.
Notice that this is, so-to-say, a theorem about “automatic continuity”. It actually states that on a totally ordered group \((G,\circ ,\precsim )\), both the operation \(\circ \) and the unary operation of taking an inverse are, a fortiori, continuous as regards the order topology \(\tau _{\precsim }\).
- 7.
A total preorder \(\precsim \) on \((X,+,\cdot _{\mathbb {R}},*)\) is said to be non-zero provided that there are \(\bar{x}, \bar{y}\in X\) such that \(\mathbf{0}\prec \bar{x}*\bar{y}\).
- 8.
It is usual that the map \(\mu _X\) and the corresponding fuzzy set X are used interchangeably if this does not give rise to confusion.
References
Abrísqueta, F.J., Candeal, J.C., Catalán, R.G., De Miguel, J.R., Induráin, E.: Generalized Abel functional equations and numerical representability of semiorders. Publ. Math. Debr. 78(3–4), 557–568 (2011)
Agud, L., Catalán, R.G., Díaz, S., Induráin, E., Montes, S.: Numerical representability of fuzzy total preorders. Int. J. Comput. Intell. Syst. (IJCIS) 5(6), 996–1009 (2012)
Alcantud, J.C.R., Campión, M.J., Candeal, J.C., Catalán, R.G., Induráin, E.: On the structure of acyclic binary relations. In: Medina, J., et al. (eds.) IPMU 2018, CCIS, vol. 855, pp. 3–15. Springer International Publishing AG (Part of Springer Nature 2018), Berlin (2018)
Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)
Alimov, N.G.: On ordered semigroups (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 14, 569–576 (1950)
Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and the structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)
Beja, A., Gilboa, I.: Numerical representations of imperfectly ordered preferences. A unified geometric exposition. J. Math. Psychol. 36, 426–449 (1992)
Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)
Bosi, G., Campión, M.J., Candeal, J.C., Induráin, E.: Interval-valued representability of qualitative data: the continuous case. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15(3), 299–319 (2007)
Bosi, G., Campión, M.J., Candeal, J.C., Induráin, E., Zuanon, M.E.: Isotonies on ordered cones through the concept of a decreasing scale. Math. Soc. Sci. 54, 115–127 (2007)
Bosi, G., Candeal, J.C., Induráin, E.: Continuous representability of interval orders and biorders. J. Math. Psychol. 51, 122–125 (2007)
Bosi, G., Candeal, J.C., Induráin, E., Olóriz, E., Zudaire, M.: Numerical representations of interval orders. Order 18, 171–190 (2001)
Bosi, G., Estevan, A., Gutiérrez García, J., Induráin, E.: Continuous representability of interval orders: the topological compatibility setting. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 23(3), 345–365 (2015)
Bosi, G., Gutiérrez García, J., Induráin, E.: Unified representability of total preorders and interval orders through a single function: the lattice approach. Order 26, 255–275 (2009)
Bosi, G., Herden, G.: On the structure of completely useful topologies. Appl. Gen. Topol. 3(2), 145–167 (2002)
Bosi, G., Zuanon, M.E.: Semicontinuous representability of interval orders on a metrizable topological space. Int. J. Contemp. Math. Sci. 2(17–20), 853–858 (2007)
Bridges, D.S., Mehta, G.B.: Representations of Preference Orderings. Springer, Berlin (1995)
Campión, M.J., Arzamendi, G., Gandía, L.M., Induráin, E.: Entropy of chemical processes versus numerical representability of orderings. J. Math. Chem. 54, 503–526 (2016)
Campión, M.J., Candeal, J.C., Catalán, R.G., Giarlotta, A., Greco, S., Induráin, E., Montero, J.: An axiomatic approach to finite means. Inf. Sci. 457–458, 12–28 (2018)
Campión, M.J., Candeal, J.C., Granero, A.S., Induráin, E.: Ordinal representability in Banach spaces. In: Castillo, J.M.F., Johnson, W.B. (eds.) Methods in Banach Space Theory, pp. 183–196. Cambridge University Press, Cambridge (2006)
Campión, M.J., Candeal, J.C., Induráin, E.: Representability of binary relations through fuzzy numbers. Fuzzy Sets Syst. 157, 1–19 (2006)
Campión, M.J., Candeal, J.C., Induráin, E.: On Yi’s extension property for totally ordered topological spaces. J. Korean Math. Soc. 43(1), 159–181 (2006)
Campión, M.J., Candeal, J.C., Induráin, E.: Semicontinuous order-representability of topological spaces. Bol. Soc. Mat. Mexicana 3(15), 81–89 (2009)
Campión, M.J., Candeal, J.C., Induráin, E.: Preorderable topologies and order-representability of topological spaces. Topol. Appl. 159, 2971–2978 (2009)
Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Order embeddings with irrational codomains: Debreu properties of real subsets. Order 23, 343–357 (2006)
Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Representable topologies and locally connected spaces. Topol. Appl. 154, 2040–2049 (2007)
Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Continuous order representability properties of topological spaces and algebraic structures. J. Korean Math. Soc. 49(3), 449–473 (2012)
Campión, M.J., Candeal, J.C., Induráin, E., Zudaire, M.: Continuous representability of semiorders. J. Math. Psychol. 52, 48–54 (2008)
Campión, M.J., De Miguel, L., Catalán, R.G., Induráin, E., Abrísqueta, F.J.: Binary relations coming from solutions of functional equations: orderings and fuzzy subsets. Internat. J. Uncertain Fuzziness Knowl.-Based Syst. 25(Suppl. 1), 19–42 (2017)
Campión, M.J., Falcó, E., García-Lapresta, J.L., Induráin, E.: Assigning numerical scores to linguistic expressions. Axioms 6(3), UNSP 19 (2017)
Campión, M.J., Gómez-Polo, C., Induráin, E., Raventós-Pujol, A.: A survey of the mathematical foundations of axiomatic entropy: representability and orderings. Axioms 7, 29 (2018)
Candeal, J.C., De Miguel, J.R., Induráin, E.: Extensive measurement: continuous additive utility functions on semigroups. J. Math. Psychol. 40(4), 281–286 (1996)
Candeal, J.C., De Miguel, J.R., Induráin, E.: Topological additively representable semigroups. J. Math. Anal. Appl. 210, 385–389 (1997)
Candeal, J.C., De Miguel, J.R., Induráin, E., Mehta, G.B.: Representations of ordered semigroups and the physical concept of entropy. Appl. Gen. Topol. 5(1), 11–23 (2004)
Candeal, J.C., Estevan, A., Gutiérrez-García, J., Induráin, E.: Semiorders with separability properties. J. Math. Psychol. 56, 444–451 (2012)
Candeal, J.C., Gutiérrez García, J., Induráin, E.: Universal codomains to represent interval orders. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17(2), 197–219 (2009)
Candeal, J.C., Hervés, C., Induráin, E.: Some results on representation and extension of preferences. J. Math. Econ. 29, 75–81 (1998)
Candeal, J.C., Induráin, E.: Semiorders and thresholds of utility discrimination: Solving the Scott-Suppes representability problem. J. Math. Psychol. 54, 485–490 (2010)
Candeal, J.C., Induráin, E., Molina, J.A.: Numerical representability of ordered topological spaces with compatible algebraic structure. Order 29, 131–146 (2012)
Candeal, J.C., Induráin, E., Sanchis, M.: Order representability in groups and vector spaces. Expo. Math. 30, 103–123 (2012)
Candeal, J.C., Induráin, E., Zudaire, M.: Numerical representability of semiorders. Math. Soc. Sci. 43(1), 61–77 (2002)
Candeal-Haro, J.C., Induráin Eraso, E.: A note on linear utility. Econ. Theory 6(3), 519–522 (1995)
Candeal-Haro, J.C., Induráin Eraso, E.: Utility representations from the concept of measure. Math. Soc. Sci. 26(1), 51–62 (1993)
Chipman, J.S.: The foundations of utility. Econometrica 28(2), 193–224 (1960)
De Miguel, J.R., Candeal, J.C., Induráin, E.: Archimedeaness and additive utility on totally ordered semigroups. Semigroup Forum 52, 335–347 (1996)
Debreu, G.: Representation if a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes, pp. 159–166. Wiley, New York (1954)
Díaz, S., Induráin, E., De Baets, B., Montes, S.: Fuzzy semi-orders: the case of t-norms without zero divisors. Fuzzy Sets Syst. 184, 52–67 (2011)
Doignon, J.P., Ducamp, A., Falmagne, J.C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28, 73–109 (1984)
Droste, M.: Ordinal scales in the theory of measurement. J. Math. Psychol. 31, 60–82 (1987)
Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)
Eilenberg, S.: Ordered topological spaces. Am. J. Math. 63, 39–45 (1941)
Engelking, R.: General Topology, Revised and completed edition. Heldermann Verlag, Berlin (1989)
Estevan, A., Gutiérrez García, J., Induráin, E.: Further results on the continuous representability of semiorders, Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 21(5), 675–694 (2013)
Estevan, A., Gutiérrez García, J., Induráin, E.: Numerical representation of semiorders. Order 30, 455–462 (2013)
Fishburn, P.C.: Utility Theory for Decision-Making. Wiley, New York (1970)
Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)
Fishburn, P.C.: Intransitive indifference in preference theory: a survey. Oper. Res. 18(2), 207–228 (1970)
Fishburn, P.C.: Interval Orders and Interval Graphs. Wiley, New York (1985)
Fuchs, L.: Partially Ordered Algebraical Systems. Pergamon Press, Oxford (1963)
Herden, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function. Math. Soc. Sci. 22, 123–136 (1991)
Herden, G., Mehta, G.B.: The Debreu Gap Lemma and some generalizations. J. Math. Econ. 40(7), 747–769 (2004)
Herden, G., Pallack, A.: Useful topologies and separable systems. Appl. Gen. Topol. 1(1), 61–82 (2000)
Hölder, O.: Der Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Math. Phys. Kl. 53, 1–64 (1901)
Induráin, E., Knoblauch, V.: On topological spaces whose topology is induced by a binary relation. Quaest. Math. 36(1), 47–65 (2013)
Induráin, E., Martinetti, D., Montes, S., Díaz, S., Abrísqueta, F.J.: On the preservation of semiorders from the fuzzy to the crisp setting. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 19(6), 899–920 (2011)
Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)
Lutzer, D.J., Bennet, H.R.: Separability, the countable chain condition and the Lindelf property on linearly ordered spaces. Proc. Am. Math. Soc. 23(3), 664–667 (1969)
Manders, K.L.: On JND representations of semiorders. J. Math. Psychol. 24, 224–248 (1981)
Mehta, G.B.: A remark on a utility representation theorem of Rader. Econ. Theory 9, 367–370 (1997)
Monjardet, B.: Axiomatiques et propriétés des quasi-ordres. Math. Sci. Hum. 63, 51–82 (1978)
Nachbin, L.: Topology and Order. Van Nostrand Reinhold, New York (1970)
Nyikos, P.J., Reichel, H.C.: Topologically orderable groups. Gen. Topol. Appl. 5(3), 195–204 (1975)
Olóriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78(1), 219–227 (1998)
Purisch, S.: A history of results on orderability and suborderability. In: Handbook of the History of General Topology, vol. 2, pp. 689–702. Kluwer, Dordrecht (1998)
Rader, T.: The existence of a utility function to represent preferences. Rev. Econ. Stud. 30, 229–232 (1963)
Roberts, F.S., Luce, R.D.: Axiomatic thermodynamics and extensive measurement. Synthese 18, 311–326 (1968)
Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)
Sincov, D.M.: Über eine Funktionalgleichung. Arch. Math. Phys. 3(6), 216–227 (1903)
The, A.N., Tsoukias, A.: Numerical representation of PQI interval orders. Discrete Appl. Math. 147(1), 125–146 (2005)
Van Dalen, J., Wattel, E.: A topological characterization of ordered spaces. Gen. Topol. Appl. 3, 347–354 (1973)
Willard, S.: General Topology. Reading, Massachussets (1970)
Yi, G.: Continuous extension of preferences. J. Math. Econ. 22, 547–555 (1993)
Acknowledgements
This work is partially supported by the research projects ECO2015-65031-R, MTM2015-63608-P (MINECO/ AEI-FEDER, UE), and TIN2016-77356-P (MINECO/ AEI-FEDER, UE).
We are grateful to two reviewers for their valuable suggestions and comments.
Thanks are also given to the organizers and participants in the congress SUMTOPO 2019, 34th Summer Conference on Topology and its Applications, University of the Witwatersrand, Johannesburg (South Africa) 1–4 July 2019, for their helpful discussions and comments on the contents of our contribution, a substantial part of which was presented there.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Campión, M.J., Indurain, E. (2020). Open Questions in Utility Theory. In: Bosi, G., Campión, M., Candeal, J., Indurain, E. (eds) Mathematical Topics on Representations of Ordered Structures and Utility Theory. Studies in Systems, Decision and Control, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-34226-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-34226-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34225-8
Online ISBN: 978-3-030-34226-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)