Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 263))

Abstract

Throughout this paper, our main idea is to explore different classical questions arising in Utility Theory, with a particular attention to those that lean on numerical representations of preference orderings. We intend to present a survey of open questions in that discipline, also showing the state-of-art of the corresponding literature.

In honour of G. B. Mehta on occasion of his 75th birthday.

Also dedicated to the memory of our colleague Gerhard Herden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In other quite different and multidisciplinary contexts, this is sometimes called an isotony, an entropy function, a measurement, a score or an order-preserving map. (See e.g. [8, 10, 17, 18, 30, 31, 43, 49, 77]).

  2. 2.

    This property is also known as the translation-invariance of the total order \(\precsim \) as regards the binary operation \(\circ \). Notice that, in particular, a totally ordered semigroup is always cancellative, namely \(s \circ u = t \circ u \Leftrightarrow s = t \Leftrightarrow u \circ s = u \circ t \ \ (s,t,u \in S).\)

  3. 3.

    Despite we are working with totally ordered semigroups, it can be proved that we could actually be working with a totally preordered semigroup, where \(\precsim \) is a total preorder but not necessarily a linear order (i.e.: the binary relation \(\precsim \) could fail to be antisymmetric). When this happens, we might pass to be working with a quotient space \(S/\sim \) whose elements are the indifference classes of the elements of S with respect to \(\sim \). That is, given \(s \in S\), its corresponding class is the set \(\lbrace t \in S: t \sim s \rbrace \). Provided that there is a compatibility between the total preorder \(\precsim \) and the binary operation \(\circ \) such that \(s \precsim t \Leftrightarrow s \circ u \precsim t \circ u \Leftrightarrow u \circ s \precsim u \circ t\) holds for every \(s,t,u \in S\), it is easy to see that \(S/\sim \) inherits a structure of totally ordered semigroup by considering in a natural way that the binary operation \(\circ \) as well as \( \precsim \) directly act on the indifference classes that \(\sim \) induces on S.

    By this reason, in what follows we will be working with totally ordered semigroups, instead of just totally preordered semigroups, unless otherwise stated.

  4. 4.

    In this setting, a mapping f with these properties is said to be an additive utility function.

  5. 5.

    Here on \(S \times S\) we will consider the product topology coming from \(\tau \) on S.

  6. 6.

    Notice that this is, so-to-say, a theorem about “automatic continuity”. It actually states that on a totally ordered group \((G,\circ ,\precsim )\), both the operation \(\circ \) and the unary operation of taking an inverse are, a fortiori, continuous as regards the order topology \(\tau _{\precsim }\).

  7. 7.

    A total preorder \(\precsim \) on \((X,+,\cdot _{\mathbb {R}},*)\) is said to be non-zero provided that there are \(\bar{x}, \bar{y}\in X\) such that \(\mathbf{0}\prec \bar{x}*\bar{y}\).

  8. 8.

    It is usual that the map \(\mu _X\) and the corresponding fuzzy set X are used interchangeably if this does not give rise to confusion.

References

  1. Abrísqueta, F.J., Candeal, J.C., Catalán, R.G., De Miguel, J.R., Induráin, E.: Generalized Abel functional equations and numerical representability of semiorders. Publ. Math. Debr. 78(3–4), 557–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agud, L., Catalán, R.G., Díaz, S., Induráin, E., Montes, S.: Numerical representability of fuzzy total preorders. Int. J. Comput. Intell. Syst. (IJCIS) 5(6), 996–1009 (2012)

    Article  Google Scholar 

  3. Alcantud, J.C.R., Campión, M.J., Candeal, J.C., Catalán, R.G., Induráin, E.: On the structure of acyclic binary relations. In: Medina, J., et al. (eds.) IPMU 2018, CCIS, vol. 855, pp. 3–15. Springer International Publishing AG (Part of Springer Nature 2018), Berlin (2018)

    Google Scholar 

  4. Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Alimov, N.G.: On ordered semigroups (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 14, 569–576 (1950)

    Google Scholar 

  6. Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and the structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beja, A., Gilboa, I.: Numerical representations of imperfectly ordered preferences. A unified geometric exposition. J. Math. Psychol. 36, 426–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  9. Bosi, G., Campión, M.J., Candeal, J.C., Induráin, E.: Interval-valued representability of qualitative data: the continuous case. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15(3), 299–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosi, G., Campión, M.J., Candeal, J.C., Induráin, E., Zuanon, M.E.: Isotonies on ordered cones through the concept of a decreasing scale. Math. Soc. Sci. 54, 115–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bosi, G., Candeal, J.C., Induráin, E.: Continuous representability of interval orders and biorders. J. Math. Psychol. 51, 122–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bosi, G., Candeal, J.C., Induráin, E., Olóriz, E., Zudaire, M.: Numerical representations of interval orders. Order 18, 171–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bosi, G., Estevan, A., Gutiérrez García, J., Induráin, E.: Continuous representability of interval orders: the topological compatibility setting. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 23(3), 345–365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bosi, G., Gutiérrez García, J., Induráin, E.: Unified representability of total preorders and interval orders through a single function: the lattice approach. Order 26, 255–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bosi, G., Herden, G.: On the structure of completely useful topologies. Appl. Gen. Topol. 3(2), 145–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bosi, G., Zuanon, M.E.: Semicontinuous representability of interval orders on a metrizable topological space. Int. J. Contemp. Math. Sci. 2(17–20), 853–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bridges, D.S., Mehta, G.B.: Representations of Preference Orderings. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  18. Campión, M.J., Arzamendi, G., Gandía, L.M., Induráin, E.: Entropy of chemical processes versus numerical representability of orderings. J. Math. Chem. 54, 503–526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Campión, M.J., Candeal, J.C., Catalán, R.G., Giarlotta, A., Greco, S., Induráin, E., Montero, J.: An axiomatic approach to finite means. Inf. Sci. 457–458, 12–28 (2018)

    Article  MathSciNet  Google Scholar 

  20. Campión, M.J., Candeal, J.C., Granero, A.S., Induráin, E.: Ordinal representability in Banach spaces. In: Castillo, J.M.F., Johnson, W.B. (eds.) Methods in Banach Space Theory, pp. 183–196. Cambridge University Press, Cambridge (2006)

    Chapter  MATH  Google Scholar 

  21. Campión, M.J., Candeal, J.C., Induráin, E.: Representability of binary relations through fuzzy numbers. Fuzzy Sets Syst. 157, 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Campión, M.J., Candeal, J.C., Induráin, E.: On Yi’s extension property for totally ordered topological spaces. J. Korean Math. Soc. 43(1), 159–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Campión, M.J., Candeal, J.C., Induráin, E.: Semicontinuous order-representability of topological spaces. Bol. Soc. Mat. Mexicana 3(15), 81–89 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Campión, M.J., Candeal, J.C., Induráin, E.: Preorderable topologies and order-representability of topological spaces. Topol. Appl. 159, 2971–2978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Order embeddings with irrational codomains: Debreu properties of real subsets. Order 23, 343–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Representable topologies and locally connected spaces. Topol. Appl. 154, 2040–2049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Continuous order representability properties of topological spaces and algebraic structures. J. Korean Math. Soc. 49(3), 449–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Campión, M.J., Candeal, J.C., Induráin, E., Zudaire, M.: Continuous representability of semiorders. J. Math. Psychol. 52, 48–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Campión, M.J., De Miguel, L., Catalán, R.G., Induráin, E., Abrísqueta, F.J.: Binary relations coming from solutions of functional equations: orderings and fuzzy subsets. Internat. J. Uncertain Fuzziness Knowl.-Based Syst. 25(Suppl. 1), 19–42 (2017)

    Article  MathSciNet  Google Scholar 

  30. Campión, M.J., Falcó, E., García-Lapresta, J.L., Induráin, E.: Assigning numerical scores to linguistic expressions. Axioms 6(3), UNSP 19 (2017)

    Article  MATH  Google Scholar 

  31. Campión, M.J., Gómez-Polo, C., Induráin, E., Raventós-Pujol, A.: A survey of the mathematical foundations of axiomatic entropy: representability and orderings. Axioms 7, 29 (2018)

    Article  Google Scholar 

  32. Candeal, J.C., De Miguel, J.R., Induráin, E.: Extensive measurement: continuous additive utility functions on semigroups. J. Math. Psychol. 40(4), 281–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Candeal, J.C., De Miguel, J.R., Induráin, E.: Topological additively representable semigroups. J. Math. Anal. Appl. 210, 385–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Candeal, J.C., De Miguel, J.R., Induráin, E., Mehta, G.B.: Representations of ordered semigroups and the physical concept of entropy. Appl. Gen. Topol. 5(1), 11–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Candeal, J.C., Estevan, A., Gutiérrez-García, J., Induráin, E.: Semiorders with separability properties. J. Math. Psychol. 56, 444–451 (2012)

    Article  MathSciNet  Google Scholar 

  36. Candeal, J.C., Gutiérrez García, J., Induráin, E.: Universal codomains to represent interval orders. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17(2), 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Candeal, J.C., Hervés, C., Induráin, E.: Some results on representation and extension of preferences. J. Math. Econ. 29, 75–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Candeal, J.C., Induráin, E.: Semiorders and thresholds of utility discrimination: Solving the Scott-Suppes representability problem. J. Math. Psychol. 54, 485–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Candeal, J.C., Induráin, E., Molina, J.A.: Numerical representability of ordered topological spaces with compatible algebraic structure. Order 29, 131–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Candeal, J.C., Induráin, E., Sanchis, M.: Order representability in groups and vector spaces. Expo. Math. 30, 103–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Candeal, J.C., Induráin, E., Zudaire, M.: Numerical representability of semiorders. Math. Soc. Sci. 43(1), 61–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Candeal-Haro, J.C., Induráin Eraso, E.: A note on linear utility. Econ. Theory 6(3), 519–522 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Candeal-Haro, J.C., Induráin Eraso, E.: Utility representations from the concept of measure. Math. Soc. Sci. 26(1), 51–62 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chipman, J.S.: The foundations of utility. Econometrica 28(2), 193–224 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. De Miguel, J.R., Candeal, J.C., Induráin, E.: Archimedeaness and additive utility on totally ordered semigroups. Semigroup Forum 52, 335–347 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Debreu, G.: Representation if a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes, pp. 159–166. Wiley, New York (1954)

    Google Scholar 

  47. Díaz, S., Induráin, E., De Baets, B., Montes, S.: Fuzzy semi-orders: the case of t-norms without zero divisors. Fuzzy Sets Syst. 184, 52–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Doignon, J.P., Ducamp, A., Falmagne, J.C.: On realizable biorders and the biorder dimension of a relation. J. Math. Psychol. 28, 73–109 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Droste, M.: Ordinal scales in the theory of measurement. J. Math. Psychol. 31, 60–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)

    MATH  Google Scholar 

  51. Eilenberg, S.: Ordered topological spaces. Am. J. Math. 63, 39–45 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  52. Engelking, R.: General Topology, Revised and completed edition. Heldermann Verlag, Berlin (1989)

    Google Scholar 

  53. Estevan, A., Gutiérrez García, J., Induráin, E.: Further results on the continuous representability of semiorders, Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 21(5), 675–694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Estevan, A., Gutiérrez García, J., Induráin, E.: Numerical representation of semiorders. Order 30, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fishburn, P.C.: Utility Theory for Decision-Making. Wiley, New York (1970)

    Book  MATH  Google Scholar 

  56. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fishburn, P.C.: Intransitive indifference in preference theory: a survey. Oper. Res. 18(2), 207–228 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fishburn, P.C.: Interval Orders and Interval Graphs. Wiley, New York (1985)

    Book  MATH  Google Scholar 

  59. Fuchs, L.: Partially Ordered Algebraical Systems. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  60. Herden, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function. Math. Soc. Sci. 22, 123–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Herden, G., Mehta, G.B.: The Debreu Gap Lemma and some generalizations. J. Math. Econ. 40(7), 747–769 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Herden, G., Pallack, A.: Useful topologies and separable systems. Appl. Gen. Topol. 1(1), 61–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hölder, O.: Der Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Math. Phys. Kl. 53, 1–64 (1901)

    MATH  Google Scholar 

  64. Induráin, E., Knoblauch, V.: On topological spaces whose topology is induced by a binary relation. Quaest. Math. 36(1), 47–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Induráin, E., Martinetti, D., Montes, S., Díaz, S., Abrísqueta, F.J.: On the preservation of semiorders from the fuzzy to the crisp setting. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 19(6), 899–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  67. Lutzer, D.J., Bennet, H.R.: Separability, the countable chain condition and the Lindelf property on linearly ordered spaces. Proc. Am. Math. Soc. 23(3), 664–667 (1969)

    Google Scholar 

  68. Manders, K.L.: On JND representations of semiorders. J. Math. Psychol. 24, 224–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  69. Mehta, G.B.: A remark on a utility representation theorem of Rader. Econ. Theory 9, 367–370 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. Monjardet, B.: Axiomatiques et propriétés des quasi-ordres. Math. Sci. Hum. 63, 51–82 (1978)

    MATH  Google Scholar 

  71. Nachbin, L.: Topology and Order. Van Nostrand Reinhold, New York (1970)

    MATH  Google Scholar 

  72. Nyikos, P.J., Reichel, H.C.: Topologically orderable groups. Gen. Topol. Appl. 5(3), 195–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  73. Olóriz, E., Candeal, J.C., Induráin, E.: Representability of interval orders. J. Econ. Theory 78(1), 219–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  74. Purisch, S.: A history of results on orderability and suborderability. In: Handbook of the History of General Topology, vol. 2, pp. 689–702. Kluwer, Dordrecht (1998)

    Chapter  MATH  Google Scholar 

  75. Rader, T.: The existence of a utility function to represent preferences. Rev. Econ. Stud. 30, 229–232 (1963)

    Article  Google Scholar 

  76. Roberts, F.S., Luce, R.D.: Axiomatic thermodynamics and extensive measurement. Synthese 18, 311–326 (1968)

    Article  MATH  Google Scholar 

  77. Scott, D., Suppes, P.: Foundational aspects of theories of measurement. J. Symb. Log. 23, 113–128 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sincov, D.M.: Über eine Funktionalgleichung. Arch. Math. Phys. 3(6), 216–227 (1903)

    Google Scholar 

  79. The, A.N., Tsoukias, A.: Numerical representation of PQI interval orders. Discrete Appl. Math. 147(1), 125–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  80. Van Dalen, J., Wattel, E.: A topological characterization of ordered spaces. Gen. Topol. Appl. 3, 347–354 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  81. Willard, S.: General Topology. Reading, Massachussets (1970)

    MATH  Google Scholar 

  82. Yi, G.: Continuous extension of preferences. J. Math. Econ. 22, 547–555 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the research projects ECO2015-65031-R, MTM2015-63608-P (MINECO/ AEI-FEDER, UE), and TIN2016-77356-P (MINECO/ AEI-FEDER, UE).

We are grateful to two reviewers for their valuable suggestions and comments.

Thanks are also given to the organizers and participants in the congress SUMTOPO 2019, 34th Summer Conference on Topology and its Applications, University of the Witwatersrand, Johannesburg (South Africa) 1–4 July 2019, for their helpful discussions and comments on the contents of our contribution, a substantial part of which was presented there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Indurain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campión, M.J., Indurain, E. (2020). Open Questions in Utility Theory. In: Bosi, G., Campión, M., Candeal, J., Indurain, E. (eds) Mathematical Topics on Representations of Ordered Structures and Utility Theory. Studies in Systems, Decision and Control, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-34226-5_3

Download citation

Publish with us

Policies and ethics