Skip to main content

Continuity and Continuous Multi-utility Representations of Nontotal Preorders: Some Considerations Concerning Restrictiveness

  • Chapter
  • First Online:
Mathematical Topics on Representations of Ordered Structures and Utility Theory

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 263))

Abstract

A continuous multi-utility fully represents a not necessarily total preorder on a topological space by means of a family of continuous increasing functions. While it is very attractive for obvious reasons, and therefore it has been applied in different contexts, such as expected utility for example, it is nevertheless very restrictive. In this paper we first present some general characterizations of the existence of a continuous order-preserving function, and respectively a continuous multi-utility representation, for a preorder on a topological space. We then illustrate the restrictiveness associated to the existence of a continuous multi-utility representation, by referring both to appropriate continuity conditions which must be satisfied by a preorder admitting this kind of representation, and to the Hausdorff property of the quotient order topology corresponding to the equivalence relation induced by the preorder. We prove a very restrictive result, which may concisely described as follows: the continuous multi-utility representability of all closed (or equivalently weakly continuous) preorders on a topological space is equivalent to the requirement according to which the quotient topology with respect to the equivalence corresponding to the coincidence of all continuous functions is discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcantud, J.C.R., Bosi, G., Campión, M.J., Candeal, J.C., Induráin, E., Rodríguez-Palmero, C.: Continuous utility functions through scales. Theory Decis. 64, 479–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alcantud, J.C.R., Bosi, G., Zuanon, M.: Richter-Peleg multi-utility representations of preorders. Theory Decis. 80, 443–450 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aumann, R.: Utility theory without the completeness axiom. Econometrica 30, 445–462 (1962)

    Article  MATH  Google Scholar 

  4. Banerjee, K., Dubey, R.S.: On multi-utility representation of equitable intergenerational preferences. In: Econophysics and Economics of Games, Social Choices and Quantitative Techniques. New Economic Windows, pp. 175–180. Springer, Berlin (2010)

    Chapter  Google Scholar 

  5. Baucells, M., Shapley, L.S.: Multiperson utility. Games Econ. Behav. 62, 329–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beardon, A.F., Mehta, G.B.: The utility theorems of Wold, Debreu and Arrow-Hahn. Econometrica 62, 181–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beardon, A.F., Mehta, G.B.: Utility functions and the order type of the continuum. J. Math. Econ. 23, 387–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bevilacqua, P., Bosi, G., Zuanon, M.: Existence of order-preserving functions for nontotal fuzzy preference relations under decisiveness. Axioms 29, 1–10 (2017)

    MATH  Google Scholar 

  9. Bevilacqua, P., Bosi, G., Zuanon, M.: Representation of a preorder on a topological space by a countable family of upper semicontinuous order-preserving functions. Adv. Appl. Math. Sci. 17, 417–427 (2018)

    Google Scholar 

  10. Bosi, G., Estevan, A., RaventĂłs-Pujol, A., Topologies for semicontinuous multi-utilities. Theory Decis., to appear

    Google Scholar 

  11. Bosi, G., Estevan, A., Zuanon, M.: Partial representations of orderings. Int. J. Uncertain., Fuzziness Knowl. Based Syst. 26, 453–473 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bosi, G., Herden, G.: On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. Order 22, 329–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bosi, G., Herden, G.: On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller. Order 23, 271–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bosi, G., Herden, G.: Continuous multi-utility representations of preorders. J. Math. Econ. 48, 212–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bosi, G., Herden, G.: On continuous multi-utility representations of semi-closed and closed preorders. Math. Soc. Sci. 79, 20–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bosi, G., Herden, G.: The structure of useful topologies. J. Math. Econ. 82, 69–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bosi, G., Mehta, G.B.: Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof. J. Math. Econ. 38, 311–328 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bosi, G., Zuanon, M.: Continuous multi-utility for extremely continuous preorders. Int. J. Contemp. Math. Sci. 4, 439–445 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Bridges, D.S., Mehta, G.B.: Representation of Preference Orderings. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  20. Burgess, D.C.J., Fitzpatrick, M.: On separation axioms for certain types of ordered topological space. Math. Proc. Camb. Philos. Soc. 82, 59–65 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Campión, M.J., Candeal, J.C., Induráin, E.: Preorderable topologies and order-representability of topological spaces. Topol. Its Appl. 156, 2971–2978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cato, S.: Szpilrajn, Arrow and Suzumura: concise proofs of extensions theorems and an extension. Metroeconomica 63, 235–249 (2012)

    Article  MATH  Google Scholar 

  23. Cigler, J., Reichel, H.C.: Topologie. Bibliographisches Institut, Mannheim-Wien-ZĂĽrich (1978)

    MATH  Google Scholar 

  24. Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes. Wiley, New York (1954)

    Google Scholar 

  25. Debreu, G.: Continuity properties of Paretian utility. Int. Econ. Rev. 5, 285–293 (1964)

    Article  MATH  Google Scholar 

  26. Dubra, J., Maccheroni, F., Ok, E.A., Expected utility theory without the completeness axiom. J. Econ. Theory 115, 118–133 ((2004))

    Article  MathSciNet  MATH  Google Scholar 

  27. Eilenberg, S.: Ordered topological spaces. Am. J. Math. 63, 39–45 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  28. Evren, O.: On the existence of expected multi-utility representations. Econ. Theory 35, 575–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Evren, O., Ok, E.A.: On the multi-utility representation of preference relations. J. Math. Econ. 47, 554–563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galaabaatar, T., Karni, E.: Expected multi-utility representations. Math. Soc. Sci. 64, 242–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gerasimou, G.: On continuity of incomplete preferences. Soc. Choice Welf. 41, 157–167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gorno, L.: A strict expected multi-utility theorem. J. Math. Econ. 71, 92–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Herden, G.: On the existence of utility functions. Math. Soc. Sci. 17, 297–313 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Herden, G.: On the existence of utility functions II. Math. Soc. Sci. 18, 107–117 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Herden, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function. Math. Soc. Sci. 22, 123–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Herden, G., Mehta, G.B.: The Debreu gap lemma and some generalizations. J. Math. Econ. 40, 747–769 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Herden, G., Pallack, A.: Useful topologies and separable systems. Appl. Gen. Topol. 1, 61–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Herden, G., Pallack, A.: On the continuous analogue of the Szpilrajn theorem I. Mathematical Social Sciences 43, 115–134 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Johnson, D.G., Mandelker, M., Separating chains in topological spaces. J. Lond. Math. Soc. 4, 510–512 (1971/72)

    Article  MATH  Google Scholar 

  40. Kabanov, Y., Lépinette, E.: Essential supremum and essential maximum with respect to random preference relations. J. Math. Econ. 49, 488–495 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaminski, B.: On quasi-orderings and multi-objective functions. Eur. J. Oper. Res. 177, 1591–1598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levin, V.: Measurable utility theorems for closed and lexicographic preference relations. Sov. Math. Dokl. 27, 639–643 (1983)

    MATH  Google Scholar 

  43. Levin, V.L.: The Monge-Kantorovich problems and stochastic preference relation. Adv. Math. Econ. 3, 97–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)

    Google Scholar 

  45. Mashburn, J.D.: A note on reordering ordered topological spaces and the existence of continuous, strictly increasing functions. Topol. Proc. 20, 207–250 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Mehta, G.B.: Topological ordered spaces and utility functions. Int. Econ. Rev. 18, 779–782 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mehta, G.B.: A new extension procedure for the Arrow-Hahn theorem. Int. Econ. Rev. 22, 113–118 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mehta, G.B.: Continuous utility functions. Econ. Lett. 18, 113–115 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mehta, G.B.: Existence of an order preserving function on normally preordered spaces. Bull. Aust. Math. Soc. 34, 141–147 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mehta, G.B.: On a theorem of Fleischer. J. Aust. Math. Soc. 40, 261–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mehta, G.B.: Some general theorems on the existence of order-preserving functions. Math. Soc. Sci. 15, 135–143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mehta, G.B., Preference and utility. In: Barberá, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, pp. 1–47. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  53. Minguzzi, E.: Topological conditions for the representation of preorders by continuous utilities. Appl. Gen. Topol. 13, 81–89 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Minguzzi, E.: Normally preordered spaces and utilities. Order 30, 137–150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nishimura, H., Ok, E.A.: Utility representation of an incomplete and nontransitive preference relation. J. Econ. Theory 166, 164–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nachbin, L.: Topology and Order. D. Van Nostrand Company, New York (1965)

    Google Scholar 

  57. Ok, E.A.: Utility representation of an incomplete preference relation. J. Econ. Theory 104, 429–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38, 93–96 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  59. Richter, M.: Revealed preference theory. Econometrica 34, 635–645 (1966)

    Article  MATH  Google Scholar 

  60. Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 3, 403–404 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  61. Suzumura, K.: Remarks on the theory of collective choice. Economica 43, 381–390 (1976)

    Article  Google Scholar 

  62. Ward Jr., L.E.: Partially ordered topologicl spaces. Proc. Am. Math. Soc. 5, 144–161 (1954)

    Article  MATH  Google Scholar 

  63. Yilmaz, O.: Utility representation of lower separable preferences. Math. Soc. Sci. 56, 389–394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bosi, G., Zuanon, M. (2020). Continuity and Continuous Multi-utility Representations of Nontotal Preorders: Some Considerations Concerning Restrictiveness. In: Bosi, G., CampiĂłn, M., Candeal, J., Indurain, E. (eds) Mathematical Topics on Representations of Ordered Structures and Utility Theory. Studies in Systems, Decision and Control, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-34226-5_11

Download citation

Publish with us

Policies and ethics