Skip to main content

Parameter-Free Structural Diversity Search

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2019 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11881))

Included in the following conference series:

Abstract

The problem of structural diversity search is to find the top-k vertices with the largest structural diversity in a graph. However, when identifying distinct social contexts, existing structural diversity models (e.g., t-sized component, t-core, and t-brace) are sensitive to an input parameter of t. To address this drawback, we propose a parameter-free structural diversity model. Specifically, we propose a novel notation of \(\mathsf {discriminative}\) \(\mathsf {core}\), which automatically models various kinds of social contexts without parameter t. Leveraging on \(\mathsf {discriminative}\) \(\mathsf {cores}\) and h-index, the structural diversity score for a vertex is calculated. We study the problem of parameter-free structural diversity search in this paper. An efficient top-k search algorithm with a well-designed upper bound for pruning is proposed. Extensive experiment results demonstrate the parameter sensitivity of existing t-core based model and verify the superiority of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decomposition and maintenance in large dynamic graphs. In: DEBS, pp. 161–168. ACM (2016)

    Google Scholar 

  2. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)

    Google Scholar 

  3. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: KDD, pp. 1316–1325. ACM (2014)

    Google Scholar 

  4. Chang, L., Zhang, C., Lin, X., Qin, L.: Scalable top-k structural diversity search. In: ICDE, pp. 95–98 (2017)

    Google Scholar 

  5. Cheng, H., Zhong, M., Wang, J., Qian, T.: Keyword search based mashup construction with guaranteed diversity. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11707, pp. 423–433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27618-8_31

    Chapter  Google Scholar 

  6. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE, pp. 51–62 (2011)

    Google Scholar 

  7. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, F., Zhuang, Y.: Ego-network probabilistic graphical model for discovering on-line communities. Appl. Intell. 48(9), 3038–3052 (2018)

    Article  Google Scholar 

  9. Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816. ACM (2017)

    Google Scholar 

  10. Goyal, A., Lu, W., Lakshmanan, L.V.S.: CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW, pp. 47–48 (2011)

    Google Scholar 

  11. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. 102(46), 16569–16572 (2005)

    Article  MATH  Google Scholar 

  12. Huang, X., Cheng, H., Li, R., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks. VLDB J. 24(3), 319–343 (2015)

    Article  Google Scholar 

  13. Huang, X., Cheng, H., Li, R.-H., Qin, L., Yu, J.X.: Top-k structural diversity search in large networks. PVLDB 6(13), 1618–1629 (2013)

    Google Scholar 

  14. Huang, X., Lakshmanan, L.V., Xu, J.: Community Search over Big Graphs. Morgan & Claypool Publishers, San Rafael (2019)

    Book  MATH  Google Scholar 

  15. Huckfeldt, R.R., Sprague, J.: Citizens, Politics and Social Communication: Information and Influence in an Election Campaign. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Jakma, P., Orczyk, M., Perkins, C.S., Fayed, M.: Distributed k-core decomposition of dynamic graphs. In: StudentWorkshop@CoNEXT, pp. 39–40. ACM (2012)

    Google Scholar 

  17. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  18. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  19. Levorato, V.: Core decomposition in directed networks: kernelization and strong connectivity. In: Contucci, P., Menezes, R., Omicini, A., Poncela-Casasnovas, J. (eds.) Complex Networks V. SCI, vol. 549, pp. 129–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05401-8_13

    Chapter  Google Scholar 

  20. Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. In: TKDE, vol. 26, no. 10, pp. 2453–2465 (2014)

    Google Scholar 

  21. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. TKDD 8(1), 4 (2014)

    Article  Google Scholar 

  22. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)

    Google Scholar 

  23. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)

    Google Scholar 

  24. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: SIGMOD Conference, pp. 1539–1554. ACM (2015)

    Google Scholar 

  25. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  26. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition: application to degeneracy ordering. TKDE 31(1), 75–90 (2019)

    Google Scholar 

  27. Wu, H., et al.: Core decomposition in large temporal graphs. In: BigData, pp. 649–658 (2015)

    Google Scholar 

  28. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC Nos. 61702435, 61972291, RGC Nos. 12200917, 12200817, CRF C6030-18GF, and the National Science Foundation of Hubei Province No. 2018CFB519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Huang, X., Zhu, Y., Xu, J. (2019). Parameter-Free Structural Diversity Search. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds) Web Information Systems Engineering – WISE 2019. WISE 2020. Lecture Notes in Computer Science(), vol 11881. Springer, Cham. https://doi.org/10.1007/978-3-030-34223-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34223-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34222-7

  • Online ISBN: 978-3-030-34223-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics