Skip to main content

Equations to Correct SPT-N Values Obtained Using Non-standard Hammer Weight and Drop Height – Part III

  • Conference paper
  • First Online:
Book cover Sustainable Thoughts in Ground Improvement and Soil Stability (GeoMEast 2019)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

The authors previously published two papers to study the influence of using non-standard hammer-weight (Wi) on the obtained blow counts, (Ni) during the SPT test. The current study is an extension to the past work; here the hammer drop height (Hi) has been changed to investigate its effect on the obtained blow counts, (Ni). Then, the multiple action of changing non-standard energy (Wi.Hi) is also investigated. The hammer weight, its drop height and the machine efficiency ( ) present the three main variables during the study.

The study methodology is experimental work and the method is physical model simulates the behavior of SPT-Rig. It has been designed and manufactured in house. The model is capable to change the hammer weight, its drop height and the overall machine efficiency. Five hammer weights, five drop heights and six different efficiencies have been changed all together; individually as well as in groups. The hammer weight ratios (Wi/Ws) and drop height ratios (Hi/Hs) each has been changed to cover the spans of 0.2, 0.4, 0.6, 0.8 and 1.0. Furthermore, six efficiencies ( ) have been changed with every change of the above ratios to cover the scope of,  = 35%, 50%, 60%, 70%, 85% and 100%. Reconstituted well graded clean silicate dense sand (SW) is used for modeling the soil.

Novel procedure has been advised as well as empirical equations have been proposed to re-adjust the incorrect blow counts (Ni) obtained using non-standard SPT parameters or uses machines of a low efficiency. Also, a simplified method fast and costless has been suggested to sort out the problem of machines owing low efficiencies. Finally, some modifications to well-known formula are advised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggour, M.S., Radding, W.R.: Standard Penetration Test (SPT) Correction. Technical Report. Civil and Environmental Engineering Department, University of Maryland (2001)

    Google Scholar 

  • Ameratunga, J., Sivakugag, N., Das, B.M.: Correlations of Soil and Rock Properties in Geotechnical Engineering. Springer, India (2016)

    Book  Google Scholar 

  • ASTM, 1999, D 1586-99. Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils. American Society for Testing and Materials. Annual Book of ASTM Standards, Philadelphia (1999)

    Google Scholar 

  • Bazaraa, A.R.S.: Use of standard penetration test for estimating settlement of shallow foundations on sand. thesis presented to University of Illinois, in partial fulfillment of the requirements for the degree of Doctor of Philosophy (1967)

    Google Scholar 

  • British Standards: Determination of the penetration resistance using the split barrel sampler. The standard penetration test, SPT. B.S.1377 Part 9 (1990)

    Google Scholar 

  • Burmister, D.M.: The importance and practical use of relative density in soil mechanics. Proc. ASTM 48, 1249–1268 (1948)

    Google Scholar 

  • Butler, J.J., Caliendo, J.A., Goble, G.G.: Comparison of SPT energy measurement methods. In: Proceedings of International Conference on Site Characterization, ISC 1998, Balkema, Rotterdam, The Netherlands, pp. 901–906 (1998)

    Google Scholar 

  • De Mello, V.F.B.: The standard penetration test. In: In Proceedings of the 4th Pan-American Conference on Soil Mechanics and Foundation Engineering, San Juan, PR, vol. 1, pp. 1–86 (1971)

    Google Scholar 

  • Fang, H.Y.: Foundation Engineering Handbook. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  • Farrar, J.A.: Summary of standard penetration test (SPT) energy measurement experiment. In: Proceedings of International Conference on Site Characterization, ISC 1998, Balkema, Rotterdam, The Netherlands, pp. 919–926 (1998)

    Google Scholar 

  • Fletcher, G.F.A.: Standard penetration test: its uses and abuses. J. Soil Mech. Found. Div. 91(4), 67–75 (1965)

    Google Scholar 

  • Howie, J., Campanella, R.G.: Energy measurement in the standard penetration test (SPT). Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada (2008)

    Google Scholar 

  • Khater, R.Kh.: Correction factor to enhance the non-standard SPT hammer effect. In: 18th International Conference on Soil Mechanics and Geotechnical Engineering, World Academy of Science (2016)

    Google Scholar 

  • Khater, R.Kh.: The SPT- theory practice and correlations. Text book style, under publication stage (2018)

    Google Scholar 

  • Khater, R.Kh., Abdelrahman, G.E., Baset, M.A.: Equations to Correction SPT N-Values Obtained from Using Non-Standard Hammer Weight – Part I, International Civil Engineering and Architecture Conference, Karadeniz Technical University, Trabzon, Turkey (2019a)

    Google Scholar 

  • Khater, R.Kh., Abdelrahman, G.E., Baset, M.A.: Equations to Correction SPT N-Values Obtained from Using Non-Standard Hammer Weight – Part II. Paper ID: 189. GeoSt.John’s 2019. In: The 72nd Canadian Geot. Conference, Newfoundland and Labrador, Canada (2019b)

    Google Scholar 

  • Lamb, R.: SPT Hammer Calibration Update. A Memo to Geotechnical Engineering Section, Minnesota Department of Transportation (2000)

    Google Scholar 

  • Look, B.G., Seldel, J.P., Sivakumar, S.T., Welikala, D.I.C.: Standard penetration test measurement variations exposed using a digital PDM device. In: International Conference on Geotechnical Engineering, ICGE, Colombo, pp. 451–454 (2105)

    Google Scholar 

  • Peck, R.B., Bazaraa, A.R.S.: Discussion on settlement of spread footing on sand. J. Soil Mech. Found. Div. 95(5), 905–909 (1969)

    Google Scholar 

  • Skempton, A.W.: Standard Penetration Test Procedures and the Effect in Sands of Overburden Pressure, Relative Density, Particle Size, Aging and Over consolidation. Geotechnique 36(3), 425–447 (1986)

    Article  Google Scholar 

  • Sherbiny, R.M., Salem, M.A.: Evaluation of SPT Energy for Donut and Safety Hammers Using CPT Measurements in Egypt. Cairo University, Egypt (2013)

    Book  Google Scholar 

  • Tokimatsu, K., Seed, Η.Β.: Evaluation of settlements in sand due to earthquake shaking. J. Geotech. Eng. 113(8) (1987)

    Article  Google Scholar 

  • Tsai, J.S., Liou, Y.J., Liu, F.C., Chen, C.H.: Effect of hammer shape on energy transfer measurement in the standard penetration test. Soil Found. 44(3), 103–114 (2004)

    Article  Google Scholar 

  • Youd, L., et al.: SPT hammer energy ratio versus drop height. J. Geotech. Geoenviron. Eng. (2008)

    Google Scholar 

Download references

Acknowledgements

The authors present their deep gratitude to Prof Dr. A. Bazaraa for his kind personal communication, direct input and advices during discussions on topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled R. Khater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khater, K.R., Baset, M.A. (2020). Equations to Correct SPT-N Values Obtained Using Non-standard Hammer Weight and Drop Height – Part III. In: Shehata, H., Brandl, H., Bouassida, M., Sorour, T. (eds) Sustainable Thoughts in Ground Improvement and Soil Stability. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-34184-8_10

Download citation

Publish with us

Policies and ethics