Skip to main content

Starch and Starch-Associated Proteins: Impacts on Wheat Grain Quality

  • Chapter
  • First Online:
Wheat Quality For Improving Processing And Human Health

Abstract

Wheat storage proteins have been historically examined and periodically established to be the major determinant of wheat quality. Gluten proteins largely contribute to the formation of viscoelastic network in a dough, enabling processing of wheat to food products including bread. More recently starch, the major component constituting 60–70% of wheat grain, is understood to play key roles in flour quality, dough functionality and end product and nutritional quality. Starch is composed of two neutral macromolecules of glucose, amylose and amylopectin. The structural differences between amylose and amylopectin are predominantly dependent on the extent and distribution of α-1,4 and α-1,6 linkages that connect the glucose units to form these two polymers. The functional properties of starch as governed by its structure, molecular organisation, granule morphology and size distribution influence dough behaviour during processing, differentially impacting the end product qualities. Also, varyingly important are the roles of starch granule associated proteins, comprised of both surface proteins and granule-integral proteins with enzyme functions, in driving starch responses in a complex dough matrix system. This chapter aims to provide an extensive re-view on how starch, associated proteins and starch-protein interactions influence functional properties of food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja G, Jaiswal S, Hucl P, Chibbar RN (2013) Genome-Specific Granule-Bound Starch Synthase I (GBSSI) Influences Starch Biochemical and Functional Characteristics in Near-Isogenic Wheat (Triticum aestivum L.) Lines. Journal of Agriculture and Food Chemistry 61:12129–12138.

    Article  CAS  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation 35: 81–91.

    Article  CAS  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM, Chan R, Johnson EL, Lieu D (2003) Temperature, water and fertilizer influence the timing of key events during during grain development in a US spring heat. Journal of Cereal Science 37: 9–20.

    Article  Google Scholar 

  • Ansari O, Båga M, Chibbar RN, Sultana N, Howes NK (2010) Analysis of starch swelling power in Australian breeding lines of hexaploid wheat (Triticum aestivum L.). Field Crops Research 115: 171–178.

    Article  Google Scholar 

  • Baldwin PM, Melia CD, Davies MC (1997) The surface chemistry of starch granules studied by time-of-flight secondary ion mass spectrometry. Journal of Cereal Science 26: 329–346.

    Article  CAS  Google Scholar 

  • Baldwin PM (2001) Starch granule-associated proteins and polypeptides: A review. Starch-Starke 53: 475–503.

    Article  Google Scholar 

  • Batra R, Kumar P, Jangra MR, Passricha N, Sikka VK (2017) High Precision Temperature Controlling AGPase in Wheat Affecting Yield and Quality Traits. Cereal Research Communications 45: 610–620.

    Article  CAS  Google Scholar 

  • Behall KM, Scholfield DJ, Hallfrisch JG, Liljeberg-Elmstahl HGM (2006) Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 29: 976–981.

    Article  CAS  PubMed  Google Scholar 

  • Berbezy P, Regina A, Chapron S, Bird T, Duperrier B, Chanliaud E (2015) Making high amylose wheat flour to get high resistant starch content bread. In: 6th International Dietary Fibre Conference.

    Google Scholar 

  • Berky R, Sipko E, Balazs G, Harasztos AH, Kemeny S, Fekete J (2016) Coupled-Column RP-HPLC in Combination with Chemometrics for the Characterization and Classification of Wheat Varieties. Chromatographia 79: 811–821.

    Article  CAS  Google Scholar 

  • Bird A, Regina A (2017) High amylose wheat: A platform for delivering human health benefits. Journal of Cereal Science 82: 99–105.

    Article  CAS  Google Scholar 

  • Bird AR, Conlon MA, Christophersen CT, Topping DL (2010) Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes 1: 423–431.

    Article  CAS  PubMed  Google Scholar 

  • Bowsher CG, Scrase-Field EF, Esposito S, Emes MJ, Tetlow IJ (2007) Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Journal of Experimental Botany 58: 1321–1332.

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiology 130: 1464–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao HP, Shannon JC (1997) BT1, a possible adenylate translocator, is developmentally expressed in maize endosperm but not detected in starchy tissues from several other species. Physiologia Plantarum 100: 400–406.

    Article  CAS  Google Scholar 

  • Conlon MA, Kerr CA, McSweeney CS, Dunne RA, Shaw JM, Kang S, et al. (2012) Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet. Journal of Nutrition 142: 832–840.

    Article  CAS  Google Scholar 

  • Crofts N, Nakamura Y, Fujita N (2017) Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Science 262: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • El Hindawy M, Kim CY, Hamaker BR (2018) Intestinal Simulation of Gut-brain Axis by Dietary Slowly Digestible Starch Regulates Satiety and Glucose Homeostasis. In Vitro Cellular & Developmental Biology – Animal 54: S25-S25.

    Google Scholar 

  • Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase-Field ESF, Tetlow IJ (2003) Starch synthesis and carbon partitioning in developing endosperm. Journal of Experimental Botany 54: 569–575.

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46: S33-S50.

    PubMed  Google Scholar 

  • Fabian A, Jager K, Rakszegi M, Barnabas B (2011) Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Reports 30: 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Fushan L, Romanova N, Lee EA, Ahmed R, Evans M, Gilbert EP, Morell MK, Emes MJ, Tetlow IJ (2012) Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochemical Journal 448: 373–387.

    Article  CAS  Google Scholar 

  • Geera BP, Nelson JE, Souza E, Huber KC (2006) Flour Pasting Properties of Wild-Type and Partial Waxy Soft Wheats in Relation to Growing Environment-Induced Fluctuations in Starch Characteristics. Cereal Chemistry 83: 558–564.

    Article  CAS  Google Scholar 

  • Geng J, Li LQ, Lv Q, Zhao Y, Liu Y, Zhang L, Li XJ (2017) TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta 246: 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  • Gibson LR, Paulsen GM (1999) Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science 39: 1841–1846.

    Article  Google Scholar 

  • Griffiths CA, Sagar R, Geng Y, Primavesi LF, Patel MK, Passarelli MK, et al. (2016) Chemical intervention in plant sugar signalling increases yield and resilience. Nature 540, 574–578.

    Article  CAS  PubMed  Google Scholar 

  • Graybosch RA, Souza E, Berzonsky W, Baenziger PS, Chung O (2003) Functional properties of waxy wheat flours: genotypic and environmental effects. Journal of Cereal Science 38: 69–76.

    Article  Google Scholar 

  • Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews 23: 366–384.

    Article  CAS  PubMed  Google Scholar 

  • Guo HJ, Liu YC, Li X, Yan ZH, Xie YD, Xiong HC, et al. (2017a) Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 18: 358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HJ, Yan ZH, Li X, Xie YD, Xiong HC, Liu YC, et al. (2017b) Development of a High-Efficient Mutation Resource with Phenotypic Variation in Hexaploid Winter Wheat and Identification of Novel Alleles in the TaAGP.L-B1 Gene. Frontiers in Plant Science 8: 9.

    Google Scholar 

  • Guzman C, Alvarez JB (2016) Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theoretical and Applied Genetics 129: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Hamaker BR, Griffin VK (1993) Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chemistry 70: 377–380.

    CAS  Google Scholar 

  • Hardy K, Brand-Miller J, Brown KD, Thomas MG, Copeland L (2015) The importance of dietary carbohydrate in human evolution. The Quarterly Review of Biology 90: 251–268.

    Article  PubMed  Google Scholar 

  • Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T (1997) Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chemistry 74: 576–580.

    Article  CAS  Google Scholar 

  • Hazard B, Zhang X, Colasuonno P, Uauy C, Beckles DM, Dubcovsky J (2012) Induced Mutations in the Starch Branching Enzyme II (SBEII) Genes Increase Amylose and Resistant Starch Content in Durum Wheat. Crop Science 52: 1754–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazard B, Zhang XQ, Naemeh M, Hamilton MK, Rust B, Raybould HE, et al. (2015) Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats. Crop Science 55: 2813–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann C, Göke R, Richter G, Fehmann HC, Arnold R, Göke B (1995) Glucagon-Like Peptide-1 and Glucose-Dependent Insulin-Releasing Polypeptide Plasma Levels in Response to Nutrients. Digestion 56: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Hogg AC, Gause K, Hofer P, Martin JM, Graybosch RA, Hansen LE, Giroux MJ (2013) Creation of a high amylose durum wheat through mutagenesis of starch synthase II (SSIIa). Journal of Cereal Science 57: 377–383.

    Article  CAS  Google Scholar 

  • Hogg AC, Martin JM, Giroux MJ (2017) Novel ssIIa Alleles Produce Specific Seed Amylose Levels in Hexaploid Wheat. Cereal Chemistry 94: 1008–1015.

    CAS  Google Scholar 

  • Hoshino T, Ito S, Hatta K, Nakamura T, Yamamori M (1996) Development of waxy common wheat by haploid breeding. Breeding Science 46: 185–188.

    Google Scholar 

  • Hou J, Li T, Wang YM, Hao CY, Liu HX, Zhang XY (2017) ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnology Journal 15: 1533–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung PV, Maeda T, Morita N (2006) Waxy and high-amylose wheat starches and flours - characteristics, functionality and application. Trends in Food Science & Technology 17: 448–456.

    Article  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, et al. (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science 164: 873–881.

    Article  CAS  Google Scholar 

  • Jenner CF, Ugalde TD, Aspinall D (1991) The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology 18: 211–226.

    CAS  Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry 48: 383–392.

    Article  CAS  PubMed  Google Scholar 

  • Jing Q, Jiang D, Dai T, Cao W (2003) Effects of genotype and environment on wheat grain quality and protein components. Ying Yong Sheng Tai Xue Bao 14: 1649–1653.

    CAS  PubMed  Google Scholar 

  • Kang GZ, Li SY, Zhang MQ, Peng HF, Wang CY, Zhu YJ, Guo TC (2013a) Molecular Cloning and Expression Analysis of the Starch-branching Enzyme III Gene from Common Wheat (Triticum aestivum). Biochemical Genetics 51: 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Kang GZ, Xu W, Liu GQ, Peng XQ, Guo TC (2013b) Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 56: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Kaur V, Madaan S, Behl RK (2017) ADP-glucose Pyrophosphorylase Activity in Relation to Yield Potential of Wheat: Response to Independent and Combined High Temperature and Drought Stress. Cereal Research Communications 45: 181–191.

    Article  CAS  Google Scholar 

  • Keeling PL, Bacon PJ, Holt DC (1993) Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191: 342–348.

    Article  CAS  Google Scholar 

  • Keeling PL, Banisadr R, Barone L, Wasserman BP, Singletary GW (1994) Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Australian Journal of Plant Physiology 21: 807–827.

    CAS  Google Scholar 

  • Keeling PL, Wood JR, Tyson RH, Bridges IG (1988) Starch biosynthesis in developing wheat-grain - evidence against the direct involvement of triose phosphates in the metabolic pathway. Plant Physiology 87: 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ (2015) Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance. Advances in Nutrition 6: 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Qie YQ, Park J, Kim CH (2016) Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe 20: 202–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proceedings of the National Academy of Sciences 102: 11118–11123.

    Article  CAS  Google Scholar 

  • KoniK CM, Miskelly DM, Gras PW (1993) Starch swelling power, grain hardness and protein: relationship to sensory properties of Japanese noodless. Starch/Staerke 45: 139–144.

    Article  CAS  Google Scholar 

  • Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, et al. (2007) Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theoretical and Applied Genetics 115: 1053–1065.

    Article  CAS  PubMed  Google Scholar 

  • Kosar-Hashemi B, Li ZY, Larroque O, Regina A, Yamamori M, Morell MK, Rahman S (2007) Multiple effects of the starch synthase II mutation in developing wheat endosperm. Functional Plant Biology 34: 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Colleoni C, Dinges JR, Lin Q, Lappe RR, Rivenbark JG, et al. (2010) Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiology 153: 956–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labuschagne MT, Geleta N, Osthoff G (2007) The influence of environment on starch content and amylose to amylopectin ratio in wheat. Starch/Staerke 59: 234–238.

    Article  CAS  Google Scholar 

  • Lehmann U, Robin F (2007) Slowly digestible starch – its structure and health implications: a review. Trends in Food Science & Technology 18: 346–355.

    Article  CAS  Google Scholar 

  • Leterrier M, Holappa LD, Broglie KE, Beckles DM (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biology 8: 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell MK (1999) Cloning and characterization of a gene encoding wheat starch synthase I. Theoretical and Applied Genetics 98: 1208–1216.

    Article  CAS  Google Scholar 

  • Li Z, Li D, Du X, Wang H, Larroque O, Jenkins CLD, et al. (2011) The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. Journal of Experimental Botany 62: 5217–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZY, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, et al. (2000) The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiology 123: 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Facon M, Putaux JL, Dinges JR, Wattebled F, D’Hulst C, et al. (2013) Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf. New Phytologist 200: 1009–1021.

    Article  CAS  Google Scholar 

  • Mac Neill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany 68: 4433–4453.

    Article  CAS  Google Scholar 

  • Marshall WE, Chrastil J (1992) Interaction of Food Proteins with Starch. In: Biochemistry of Food Proteins (Hudson, B.J.F. ed) pp. 75–97. Boston, MA: Springer US.

    Chapter  Google Scholar 

  • Matsuki J, Yasui T, Kohyama K, Sasaki T (2003) Effects of environmental temperature on structure and gelatinization properties of wheat starch. Cereal Chemistry 80: 476–480.

    Article  CAS  Google Scholar 

  • McMaugh SJ, Thistleton JL, Anschaw E, Luo JX, Konik-Rose C, Wang H, et al. (2014) Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. Journal of Experimental Botany 65: 2189–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura H, Tanii S, Nakamura T, Watanabe N (1994) Genetic-control of amylose content in wheat endosperm starch and differential-effects of 3 wx genes. Theoretical and Applied Genetics 89: 276–280.

    Article  CAS  PubMed  Google Scholar 

  • Morell MK, Blennow A, Kosar Hashemi B, Samuel MS (1997) Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiology 113: 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CF, Shackley BJ, King GE, Kidwell KK (1997) Genotypic and enviromental variation for flour swelling volume in wheat. Cereal Chemistry 74: 16–21.

    Article  CAS  Google Scholar 

  • Morris CF, Bhave M (2008) Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. Journal of Cereal Science 48: 277–287.

    Article  CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993a) Decrease of waxy (wx) protein in 2 common wheat cultivars with low amylose content. Plant Breeding 111: 99–105.

    Article  CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993b) Identification of three Wx protein in wheat (Triticum aestivum L). Biochemical Genetics 31: 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Shimbata T, Vrinten P, Saito M, Yonemaru J, Seto Y, et al. (2006) Sweet wheat. Genes & Genetic Systems 81: 361–365.

    Article  CAS  Google Scholar 

  • Nhan MT, Copeland L (2014) Effects of growing environment on properties of starch from five Australian wheat varieties. Cereal Chemistry 91: 587–594.

    Article  Google Scholar 

  • Nielsen TH, Baunsgaard L, Blennow A (2002) Intermediary glucan structures formed during starch granule biosynthesis are enriched in short side chains, a dynamic pulse labeling approach. Journal of Biological Chemistry 277: 20249–20255.

    Article  CAS  Google Scholar 

  • Panozzo JF, Eagles HA (1998) Cultivar and environmental effects on quality characters in wheat. I. Starch. Australian Journal of Agricultural Research 49: 757–766.

    Article  CAS  Google Scholar 

  • Patron NJ, Greber B, Fahy BE, Laurie DA, Parker ML, Denyer K (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for starch synthesis in cereal endosperm. Plant Physiology 135: 2088–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Gonzalez-Uriarte A, Griffiths CA, Hassani-Pak K (2018) The Role of Trehalose 6-Phosphate in Crop Yield and Resilience. Plant Physiology 177: 12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss J, Ball K, Smithwhite B, Iglesias A, Kakefuda G, Li L (1991) Starch biosynthesis and its regulation. Biochemical Society Transactions 19: 539–547.

    Article  CAS  PubMed  Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. Journal of the Science of Food and Agriculture 95: 1968–1978.

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Kosarhashemi B, Samuel MS, Hill A, Abbott DC, Skerritt JH, et al. (1995) The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology 22: 793–803.

    CAS  Google Scholar 

  • Regina A, Kosar-Hashemi B, Li ZY, Rampling L, Cmiel M, Gianibelli MC, et al. (2004) Multiple isoforms of starch branching enzyme-I in wheat: lack of the major SBE-I isoform does not alter starch phenotype. Functional Plant Biology 31: 591–601.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Kosar-Hashemi B, Li ZY, Pedler A, Mukai Y, Yamamoto M, et al. (2005) Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222: 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, et al. (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences 103: 3546–3551.

    Article  CAS  Google Scholar 

  • Regina A, Blazek J, Gilbert E, Flanagan BM, Gidley MJ, Cavanagh C, et al. (2012) Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydrate Polymers 89: 979–991.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, Larroque O, et al. (2015a) A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal 13: 1276–1286.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, Larroque O, Bird AR, et al. (2015b) A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal 13: 1276–1286.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Rahman S, Li Z, Morell MK (2016) Starch, Synthesis. In: Reference Module in Food Science. Elsevier.

    Google Scholar 

  • Roldan I, Wattebled F, Mercedes Lucas M, Delvalle D, Planchot V, Jimenez S, et al. (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant Journal 49: 492–504.

    Article  CAS  Google Scholar 

  • Schonhofen A, Zhang XQ, Dubcovsky J (2017) Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality. Journal of Cereal Science 75: 165–174.

    Article  CAS  Google Scholar 

  • Seal CJ, Daly ME, Thomas LC, Bal W, Birkett AM, Jeffcoat R, Mathers JC (2003) Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. British Journal of Nutrition 90: 853–864.

    Article  CAS  Google Scholar 

  • Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra (2015) TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Science 233: 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Sestili F, Sparla F, Botticella E, Janni M, D’Ovidio R, Falini G, et al. (2016) The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science 252: 230–238.

    Article  CAS  PubMed  Google Scholar 

  • Shi Yong Cheng, Seib PA, Bernardin JE (1994) Effects of temperature during grain-filling on starches from six wheat cultivars. Cereal Chemistry 71: 369–383.

    Google Scholar 

  • Shimbata T, Nakamura T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H (2005) Mutations in wheat starch synthase II genes and PCR-based selection of a SGP-1 null line. Theoretical and Applied Genetics 111: 1072–1079.

    Article  CAS  PubMed  Google Scholar 

  • Shimbata T, Inokuma T, Sunohara A, Vrinten P, Saito M, Takiya T, Nakamura T (2011) High Levels of Sugars and Fructan in Mature Seed of Sweet Wheat Lacking GBSSI and SSIIa Enzymes. Journal of Agricultural and Food Chemistry 59: 4794–4800.

    Article  CAS  PubMed  Google Scholar 

  • Shin SI, Hea Jin C, Koo MC, Hamaker BR, Park KH, Moon TW (2004) Slowly Digestible Starch from Debranched Waxy Sorghum Starch: Preparation and Properties. Cereal Chemistry 81: 404–408.

    Article  CAS  Google Scholar 

  • Singh S, Singh G, Singh P, Singh N (2008) Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry 108: 130–139.

    Article  CAS  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, et al. (2012) Development of high amylose wheat through TILLING. BMC Plant Biology 12: 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proceedings of the National Academy of Sciences 99: 1724–1729.

    Article  CAS  Google Scholar 

  • Stone PJ, Nicolas ME (1995) A survey of the effects of high temperature during grain filling on yield and quality of 75 wheat cultivars. Australian Journal of Agricultural Research 46: 475–492.

    Article  Google Scholar 

  • Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiology 146: 1878–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetlow IJ, Emes MJ (2017) Starch Biosynthesis in the Developing Endosperms of Grasses and Cereals. Agronomy 7: 81.

    Article  CAS  Google Scholar 

  • Thitisaksakul M, Jiménez RC, Arias MC, Beckles DM (2012) Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science 56: 67–80.

    Article  CAS  Google Scholar 

  • Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81: 1031–1064.

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Wulff BBH, Dubcovsky J (2017) Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. Annual Review of Genetics 51: 435–454.

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Utsumi C, Sawada T, Fujita N, Nakamura Y (2011) Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiology 156: 61–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetrani C, Sestili F, Vitale M, Botticella E, Giacco R, Griffo E, et al. (2018) Metabolic response to amylose-rich wheat-based rusks in overweight individuals. European Journal of Clinical Nutrition 72: 904–912.

    Article  PubMed  Google Scholar 

  • Vignola MB, Baroni V, Pérez GT (2016) Genotypic and environmental effects on starch properties of Argentinean wheat flours. Starch/Staerke 68: 1065–1072.

    Article  CAS  Google Scholar 

  • Vrinten PL, Shimbata T, Yanase M, Sunohara A, Saito M, Inokuma T, et al. (2012) Properties of a novel type of starch found in the double mutant "sweet wheat". Carbohydrates Polymer 89: 1250–1260.

    Article  CAS  Google Scholar 

  • Wang S, Li T, Miao Y, Zhang Y, He Z, Wang S (2017) Effects of heat stress and cultivar on the functional properties of starch in Chinese wheat. Cereal Chemistry 94: 443–450.

    Article  CAS  Google Scholar 

  • Yamamori M, Nakamura T, Nagamine T (1995) Inheritance of waxy endosperm character in a common wheat lacking 3 Wx proteins. Breeding Science 45: 377–379.

    Google Scholar 

  • Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics 93: 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics 101: 21–29.

    Article  CAS  Google Scholar 

  • Yun MS, Umemoto T, Kawagoe Y (2011) Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiology 52: 1068–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Ao Z, Hamaker BR (2008) Nutritional Property of Endosperm Starches from Maize Mutants: A Parabolic Relationship between Slowly Digestible Starch and Amylopectin Fine Structure. Journal of Agricultural and Food Chemistry 56: 4686–4694.

    Article  CAS  PubMed  Google Scholar 

  • Zhang PF, He ZH, Tian XL, Gao FM, Xu DG, Liu JD, et al. (2017a) Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Molecular Breeding 37: 78.

    Article  CAS  Google Scholar 

  • Zhang XW, Wang Q, Zhang LL, Zhong XJ, Jiang QT, Ma J, et al. (2017b) Cloning and characterization of Agp1, the gene encoding the small subunit of ADP-glucose pyrophosphorylase from wheat and its relatives. Biologia 72: 1446–1453.

    CAS  Google Scholar 

  • Zi Y, Ding JF, Song JM, Humphreys G, Peng YX, Li CY, et al. (2018) Grain Yield, Starch Content and Activities of Key Enzymes of Waxy and Non-waxy Wheat (Triticum aestivum L.). Scientific Reports 8: 12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Carlos Guzman would like to greatly acknowledge to the Spanish Ministerio de Ciencia, Innovación y Universidades for a Ramon y Cajal grant (RYC-2017-21891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Regina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regina, A., Guzmán, C. (2020). Starch and Starch-Associated Proteins: Impacts on Wheat Grain Quality. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_3

Download citation

Publish with us

Policies and ethics