Skip to main content

An Optimal Approach for Load-Frequency Control of Islanded Microgrids Based on Nonlinear Model

  • Chapter
  • First Online:
Optimization, Learning, and Control for Interdependent Complex Networks

Abstract

Due to the increased environmental and economic challenges, in recent years, renewable based distribution generation has been developed. More penetrations from the side of consumers caused a new concept called microgrids which are able to stand with or without connection to the bulk power system. Control of microgrids in islanded mode is very crucial for decreasing the amplitude of frequency deviations as well as damping speed. This chapter aims to propose an optimal combination of FOPD and fuzzy pre-compensated FOPI approach for load-frequency control of microgrids in islanded mode. The optimization parameter of the control scheme is designed by the differential evolution (DE) algorithm which has been improved by a fuzzy approach. In the optimization, control effort is considered as a constraint. Due to the robustness and flexibility of the proposed method, the simulation results have been improved substantially. Robust performance of the proposed control method is examined through sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

K BESS :

BESS gain

G BESS(s):

BESS Linear Transfer Function

T BESS :

BESS time constant

u :

Control effort

G DEG(s):

DEG Linear Transfer Function

T T :

DEG time constant

K D :

Derivative gain of FOPD

P DEG :

Electrical power of DEG

G FC(s):

FC Linear Transfer Function

T IN :

FC time constant

T IC :

FC time constant

T G :

FC time constant

T FC :

FC time constant

K FESS :

FESS gain

G FESS(s):

FESS Linear Transfer Function

T FESS :

FESS time constant

K p2 :

FOPI proportional gain

β :

Fractional order of Integral

α :

Fractional order of the derivative

K I :

Integral gain of FOPI

P L :

Load power

Δf :

Microgrid frequency deviations

P BESS :

Output electrical power of BESS

P FC :

Output electrical power of FC

P FESS :

Output electrical power of FESS

P PV :

Output electrical power of PV

K p1 :

Proportional gain of FOPD

G PV(s):

PV Linear Transfer Function

P sol :

The solar heat power (light intensity)

G load(s):

Transfer function of the model of load disturbance

G sol(s):

Transfer function of solar power generation model

G wind(s):

Transfer function of wind power generation model

P W :

Wind mechanical power

P WTG :

WTG electrical power

K W :

WTG Gain

G WTG(s):

WTG Linear Transfer Function

T W :

WTG time constant

References

  1. M.R. Salehizadeh, A. Rahimi-Kian, K. Hausken, A leader–follower game on congestion management in power systems, in Game Theoretic Analysis of Congestion, Safety and Security (Springer, Cham, 2015), pp. 81–112

    Google Scholar 

  2. M.R. Salehizadeh, A. Rahimi-Kian, M. Oloomi-Buygi, A multi-attribute congestion-driven approach for evaluation of power generation plans. Int. Trans. Electr. Energy Syst. 25(3), 482–497 (2015)

    Article  Google Scholar 

  3. J.-J. Ma, G. Du, B.-C. Xie, CO2 emission changes of China's power generation system: input-output subsystem analysis. Energy Policy 124, 1–12 (2019)

    Article  Google Scholar 

  4. A. Goldthau, N. Sitter, Regulatory or market power Europe? EU leadership models for international energy governance, in New Political Economy of Energy in Europe (Palgrave Macmillan, Cham, 2019), pp. 27–47

    Google Scholar 

  5. M Oloomi-Buygi, M.R. Salehizadeh. Toward fairness in transmission loss allocation, in 2007 Australasian Universities Power Engineering Conference. IEEE, 2007

    Google Scholar 

  6. P.K. Ray, S.R. Mohanty, N. Kishor, Proportional–integral controller based small-signal analysis of hybrid distributed generation systems. Energy Convers. Manag. 52(4), 1943–1954 (2011)

    Article  Google Scholar 

  7. R. Dhanalakshmi, S. Palaniswami, Load frequency control of wind diesel hydro hybrid power system using conventional PI controller. Eur. J. Sci. Res. 60, 630–641 (2011)

    Google Scholar 

  8. P.K. Ray, S.R. Mohanty, N. Kishor, Proportional–integral controller based small-signal analysis of hybrid distributed generation systems. Energy Convers. Manag. 52(4), 1943–1954 (2011)

    Article  Google Scholar 

  9. G. Shankar, V. Mukherjee, Load frequency control of an autonomous hybrid power system by quasi-oppositional harmony search algorithm. Int. J. Electr. Power Energy Syst. 78, 715–734 (2016)

    Article  Google Scholar 

  10. M.A. El-Hameed, A.A. El-Fergany, Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener. Transm. Distrib. 11(3), 637–648 (2017)

    Article  Google Scholar 

  11. S.K. Pandey, S.R. Mohanty, N. Kishor, J.P.S. Cataleo, Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Systems 63, 887–900 (2014)

    Article  Google Scholar 

  12. H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3(4), 1935–1944 (2012)

    Article  Google Scholar 

  13. F. Jamshidi, S.L. Emamzadehei, M.M. Ghanbarian, Using fuzzy PI controller optimized by PSO for frequency control of island microgrids. J. Soft Comput. Inf. Technol. 6(1), 36–43 (2017)

    Google Scholar 

  14. H. Shayeghi, A. Ghasemi, Improvement of frequency fluctuations in microgrids using an optimized fuzzy P-PID controller by modified multi objective gravitational search algorithm. Iranian J. Electr. Electron. Eng. 12(4), 241–256 (2016)

    Google Scholar 

  15. A. Parisioa, E. Rikos, G. Tzamalis, L. Glielmo, Use of model predictive control for experimental microgrid optimization. Appl. Energy 115(15), 37–46 (2014)

    Article  Google Scholar 

  16. S.R. Cominesi, M. Farina, L. Giulioni, B. Picasso, R. Scattolini, A Two-Layer Stochastic Model Predictive Control Scheme for Microgrids. IEEE Trans. Control Syst. Technol. 26(1), 1–13 (2018)

    Article  Google Scholar 

  17. J. Pahasa, I. Ngamroo, PHEVs bidirectional charging/discharging and SoC control for microgrid frequency stabilization using multiple MPC. IEEE Trans. Smart Grid 6(2), 526–533 (2015)

    Article  Google Scholar 

  18. J. Pahasa, I. Ngamroo, Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid. IEEE Syst. J. 10(1), 97–105 (2016)

    Article  Google Scholar 

  19. C. Wang, X. Li, L. Guo, Y.W. Li, A nonlinear-disturbance-observer-based DC-bus voltage control for a hybrid AC/DC microgrid. IEEE Trans. Power Electron. 29(11), 6162–6177 (Nov. 2014)

    Article  Google Scholar 

  20. H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, Performance improvement of multi-DER microgrid for small- and large-signal disturbances and nonlinear loads: novel complementary control loop and fuzzy controller in a hierarchical droop-based control scheme. IEEE Sys. J. 12(1), 444–451 (2018)

    Article  Google Scholar 

  21. M. Chaoxu, W. Liu, X. Wei, M.R. Islam, Observer-based load frequency control for island microgrid with photovoltaic power. Int. J. Photoenergy 2017, 2851436 (2017). https://doi.org/10.1155/2017/2851436, 11 pages

    Article  Google Scholar 

  22. Y. Tang, Y. Bai, C. Huang, B. Du, Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy. Energy Convers. Manag. 95, 259–271 (2015)

    Article  Google Scholar 

  23. A. Ahmadi, M. Aldeen, Robust overlapping load frequency output feedback control of multi-area interconnected power systems. Int. J. Electr. Power Energy Syst. 89, 156–172 (2017)

    Article  Google Scholar 

  24. H. Cai, G. Hu, Distributed nonlinear hierarchical control of AC microgrid via unreliable communication. IEEE Trans. Smart Grid 9(4), 2429–2441 (2018)

    Article  Google Scholar 

  25. V.P. Singh, S.R. Mohanty, N. Kishor, P.K. Ray, Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Electr. Power Energy Syst. 46, 294–305 (2015)

    Article  Google Scholar 

  26. I. Pan, S. Das, Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 7(5), 2175–2186 (2016)

    Article  Google Scholar 

  27. I. Pan, S. Das, Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  28. M.-H. Khooban, T. Niknam, F. Blaabjerg, P. Davari, T. Dragicevic, A robust adaptive load frequency control for micro-grids. ISA Trans. 65, 220–229 (2016)

    Article  Google Scholar 

  29. M.H. Khooban, T. Niknam, F. Blaabjerg, T. Dragičević, A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr. Power Syst. Res. 143, 585–598 (2017)

    Article  Google Scholar 

  30. Y. Hain, R. Kulessky, G. Nudelman, Identification-based power unit model for load-frequency control purposes. IEEE Trans. Power Syst. 15(4), 1313–1321 (2000)

    Article  Google Scholar 

  31. Y. Mi, F. Yang, D. Li, C. Wang, P.C. Loh, P. Wang, The sliding mode load frequency control for hybrid power system based on disturbance observer. Int. J. Electr. Power Energy Syst. 74, 446–452 (2016)

    Article  Google Scholar 

  32. İ. Kocaarslan, E. Çam, Fuzzy logic controller in interconnected electrical power systems for load-frequency control. Int. J. Electr. Power Energy Syst. 27(8), 542–549 (2005)

    Article  Google Scholar 

  33. F. Jamshidi, M.M. Ghanbarian, Robust frequency control of islanded microgrids: ICA-based FFOPID control approach. Comput. Intell. Electr. Eng. 8(1), 51–62 (2017)

    Google Scholar 

  34. S. Das, I. Pa, S. Das, A. Gupta, A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25(2), 430–442 (2012)

    Article  Google Scholar 

  35. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  36. M. Salehpour, A. Jamali, A. Bagheri, N. Nariman-zadeh, A new adaptive differential evolution optimization algorithm based on fuzzy inference system. Eng. Sci. Technol. Int. J. 20(2), 587–597 (2017)

    Article  Google Scholar 

  37. D.C. Das, A. Roy, N. Sinha, GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. Electr. Power Energy Syst. 43, 262–279 (2012)

    Article  Google Scholar 

  38. H. Wang, G. Zeng, Y. Dai, D. Bi, J. Sun, X. Xie, Design of a fractional order frequency PID controller for an islanded microgrid: a multi-objective extremal optimization method. Energies 10(10), 1502 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Salehizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamshidi, F., Salehizadeh, M.R., Gholami, F., Shafie-khah, M. (2020). An Optimal Approach for Load-Frequency Control of Islanded Microgrids Based on Nonlinear Model. In: Amini, M. (eds) Optimization, Learning, and Control for Interdependent Complex Networks. Advances in Intelligent Systems and Computing, vol 1123. Springer, Cham. https://doi.org/10.1007/978-3-030-34094-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34094-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34093-3

  • Online ISBN: 978-3-030-34094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics