Skip to main content

Intake Structures

  • Chapter
  • First Online:
Hydraulic Structures
  • 1137 Accesses

Abstract

An intake structure is a transition through which flow is diverted from a source, such as a river, reservoir or the ocean, into a conduit, which may be a canal or a pipe. The emphasis in the chapter is on river intake design for sediment control, and intake and sump design for pumping installations. Effective sediment exclusion utilizes the phenomena of the decreasing concentration of transported sediment from the bed towards the water surface, and the sweep of bed load inwards and away from the outer region of a bend. Structures for limiting sediment content include sediment diverters, which prevent sediment from entering the diversion, sediment ejectors, which remove relatively coarse sediment from a canal after diversion, and settling basins which allow for the removal of diverted fine sediment. Conceptual descriptions of diverters and ejectors and quantitative relationships for settling efficiency and basin sizing are provided. Extraction of water from rivers may require pumping via an intake incorporating a sump. General guidelines for the design of pump sumps and intakes are presented. These include recommendations for the geometries of the general layout and intakes to ensure desirable flow conditions, calculation of the sump volume to be provided, measures for preventing vortices, and physical model testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri, S. M., Zarrati, A. R., Roshan, R., & Sarkardeh, H. (2011). Surface vortex prevention at power intakes by horizontal plates. Water Management, 164(WM4), 193–200.

    Google Scholar 

  • Anwar, H. O. (1968, October). Prevention of vortices at intakes. Water Power, 393–401.

    Google Scholar 

  • Atkinson, E. (1994a). Vortex-tube sediment extractors. I: Trapping efficiency. Journal of Hydraulic Engineering, 120(10), 1110–1125.

    Article  Google Scholar 

  • Atkinson, E (1994b) Vortex-tube sediment extractors. II: Design. Journal of Hydraulic Engineering, 120(10), 1125–1138.

    Article  Google Scholar 

  • Avery, P. (Ed.). (1989). Sediment control at intakes—A design guide. Bedford, England: BHRA, The Fluid Engineering Centre.

    Google Scholar 

  • Camp, T. R. (1946). Sedimentation and the design of settling tanks. Transactions, ASCE, 111, 895–958.

    Google Scholar 

  • Chigura, T., Mashika, B. K., & Mpofu, S. T. (2016). The use of perforated horizontal plates as vortex suppressors at horizontal intakes. Final Year Investigational Project, School of Civil & Environmental Engineering, University of the Witwatersrand, Johannesburg, South Africa.

    Google Scholar 

  • Denny, D. F. (1956). An experimental study of air-entrainment vortices in pump sumps. In Proceedings of the Institution of Mechanical Engineers (170 pp.).

    Google Scholar 

  • Garde, R. J., Ranga Raju, K. G., & Sujudi, A. W. R. (1990). Design of settling basins. Journal of Hydraulic Research, 28(1), 81–91.

    Article  Google Scholar 

  • Hernandez, N. M. (1969). Irrigation structures. In C. V. Davis & K. E. Sorensen (Eds.), Handbook of applied hydraulics (3rd ed.). McGraw-Hill.

    Google Scholar 

  • Hydraulic Institute. (1998). American national standard for pump intake design. Report ANS/HI 9.8-1998, Parsippany, New Jersey, USA.

    Google Scholar 

  • Kothyari, U. C., Pande, P. K., & Gahlot, A. K. (1994). Design of tunnel-type sediment excluders. Journal of Irrigation and Drainage Engineering, 120(1), 36–47.

    Article  Google Scholar 

  • Parshall, R. L. (1950). Experiments in cooperation with Colorado Agricultural Experiment Station. Fort Collins, Colorado.

    Google Scholar 

  • Prosser, M. J. (1977). The hydraulic design of pump sumps and intakes. British Hydromechanics Research Association and Construction Industry Research and Information Association.

    Google Scholar 

  • Raudkivi, A. J. (1993). Sedimentation: Exclusion and removal of sediment from diverted water. Hydraulic Structures Design Manual 6. Rotterdam: International Association for Hydraulic Research, A A Balkema.

    Google Scholar 

  • Raynaud, A. (1951). Water intakes on mountain streams, example of application to the Torrent Du Longon. International Association for Hydraulic Research, Fourth Meeting, Bombay, India (pp. 1–9).

    Google Scholar 

  • Schrimpf, W. (1991). Discussion of “design of settling basins”. Journal of Hydraulic Research, 29(1), 137–143.

    Google Scholar 

  • Vanoni, V. A. (Ed.). (1975). Sedimentation engineering. Prepared by the ASCE Task Committee for the Preparation of the Manual on Sedimentation of the Sedimentation Committee of the Hydraulics Division. New York: American Society of Civil Engineers.

    Google Scholar 

  • Vetter, C. P. (1940). Technical aspects of the silt problem on the Colorado River. Civil Engineering, 10(11), 698–701.

    Google Scholar 

  • Werth, D., & Frizzell, C. (2009). Minimum pump submergence to prevent surface vortex formation. Journal of Hydraulic Research, 47(1), 142–144.

    Article  Google Scholar 

Further Reading

  • Anwar, H. O. (1966). Formation of a weak vortex. Journal of Hydraulic Research, 4(1), 1.

    Article  Google Scholar 

  • Anwar, H. O. (1967, November). Flow in a free vortex. Water Power, 455.

    Google Scholar 

  • Anwar, H. O., Weller, J. A., & Amphlett, M. (1978). Similarity of free-vortex at horizontal intake. Journal of Hydraulic Research, 16(2), 95–105.

    Article  Google Scholar 

  • Blaisdell, F. W. (1960). Hood inlet for closed conduit spillways. Journal of the Hydraulics Division, ASCE, 86(HY5), 7.

    Google Scholar 

  • Camp, T. R., & Lawler, J. C. (1969). Water supplies. In C. V. Davis & K. E. Sorensen (Eds.), Handbook of applied hydraulics (3rd ed.). McGraw-Hill.

    Google Scholar 

  • Dagget, L. L., & Keulegan, G. H. (1974). Similitude in free surface vortex formations. Journal of the Hydraulics Division, ASCE, 100(HY11), 1565–1582.

    Google Scholar 

  • Goldschmidt. (1974). Wet-well volumes for multipump systems. Journal of the Irrigation and Drainage Division, ASCE, 100(IR3), 371–385.

    Google Scholar 

  • Goldschmidt. (1978). Mixing fixed-speed pumps to variable flows. Journal of the Water Pollution Control Federation, 50(7), 1733–1741.

    Google Scholar 

  • Gordon, J. L. (1970). Vortices at intakes. Water Power, 22, 137–138.

    Google Scholar 

  • Graf, W. H. (1971). Hydraulics of sediment transport. McGraw Hill.

    Google Scholar 

  • Hattersley, R. T. (1965). Hydraulic design of pump intakes. Journal of the Hydraulics Division, ASCE, 91(HY2), 223–249.

    Google Scholar 

  • Hecker, G. E. (1981). Model-prototype comparisons of free surface vortices. Journal of the Hydraulics Division, ASCE, 107(HY10), 1243–1259.

    Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. Macmillan.

    Google Scholar 

  • Razvan, E. (1989). River intakes and diversion dams. In Developments in civil engineering (Vol. 25). Elsevier Science Publishers.

    Google Scholar 

  • Vanoni, V. A. (Chmn). (1972). Chapter V: Sediment control methods: C control of sediment in canals. Journal of the Hydraulics Division, ASCE, 98 (HY9), 1647–1689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S James .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, C.S. (2020). Intake Structures. In: Hydraulic Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-34086-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34086-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34085-8

  • Online ISBN: 978-3-030-34086-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics