Skip to main content

Spillways

  • Chapter
  • First Online:
Hydraulic Structures
  • 1143 Accesses

Abstract

The chapter begins with a conceptual explanation of the hydraulics of conveyance structures with multiple possible control features: how to analyse the effect of each, and how to identify the actual control for a specified upstream head or discharge. Following a description of the general configuration of spillways, the design characteristics and analyses of the hydraulic behaviour of common spillway types are presented. These include overflow, labyrinth, piano key, side-channel, side weir, shaft, and siphon spillways, and smooth and stepped chutes. Some general concepts of cavitation are presented, as well as various approaches for describing self-aeration on chute and spillway surfaces, including prediction of the inception location, the concentration of air and the aerated flow depth. This is followed by a brief description of devices used for enhancing aeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackers, P., & Priestley, S. J. (1985). Self-aerated flow down a chute spillway. In Proceedings of the 2nd International Conference on the Hydraulics of Floods and Flood Control, Cambridge, Paper A1, Cranfield: British Hydromechanics Research Association.

    Google Scholar 

  • Anderson, A. G. (1965). Influence of channel roughness on the aeration of high-velocity, open channel flow. In Proceedings, 11th International Association of Hydraulics Research Congress, Leningrad, Vol. 1, Paper 1.37.

    Google Scholar 

  • Anderson, R. M., & Tullis, B. P. (2012). Comparison of piano key and rectangular labyrinth weir hydraulics. Journal of Hydraulic Engineering, 138(4), 358–361.

    Article  Google Scholar 

  • Annemuller, H. (1958). Luftaufnahme Durch Fliessended Wasser (Air Entrainment in Flowing Water) (p. 146). Heft: Theodor-Rehvock Flussbaulaboratorium Universitat Fridericiana Karlsruhe.

    Google Scholar 

  • Arndt, R. E. A., & Ippen, A. T. (1967). Cavitation near surfaces of distributed roughness, Hydrodynamics Report No. 104, Massachusetts Institute of Technology, June 1967.

    Google Scholar 

  • ASCE Task Committee. (1961). Aerated flow in open channels. Transactions ASCE, 25, 456.

    Google Scholar 

  • Ball, J. W. (1963). Construction finishes and high velocity flow. Journal of the Construction Division, ASCE, 89(CO2), 91–110.

    Google Scholar 

  • Ball, J. W. (1975). Cavitation damage caused by surface irregularities subjected to high velocities. In ASCE Hydraulics Division Specialty Conference, Seattle, August 1975.

    Google Scholar 

  • Ball, J. W. (1976). Cavitation from surface irregularities in high velocity flow. Journal of the Hydraulics Division, ASCE, 112(HY9), 1283–1297.

    Google Scholar 

  • Bauer, W. J. (1954). Turbulent boundary layer on steep slopes. Transactions ASCE, 119, 2719.

    Google Scholar 

  • Beta, G., Jovanovic, S., & Bukmirovic, V. (1963). Nomographs for Hydraulic Calculations, Part 1, Jaroslav Cerni Institute for Development of Water Resources, Belgrade, Yugoslavia, Vol. X, No. 28, OTS 63-11451/ 3(in Serbo-Croat).

    Google Scholar 

  • Boes, R., & Hager, W. H. (2003). Hydraulic design of stepped spillways. Journal of Hydraulic Engineering, 129(9), 671–679.

    Article  Google Scholar 

  • Borghei, S. M., Jalili, M. R., & Ghodsian, M. (1999). Discharge coefficient for sharp-crested side weir in subcritical flow. Journal of Hydraulic Engineering, 125(10), 1051–1056.

    Article  Google Scholar 

  • Bormann, K. (1968). Der Abfluss in Schussrinnen Unter Berucksichtigung der Luftaufnahme (Discharge in chutes considering air entrainment), Versuchsantalt fur Wasserbau der Technischen Hochschule Munchen, Bericht Nr 13.

    Google Scholar 

  • Bradley, J. N., & Peterka, A. J. (1957). The hydraulic design of stilling basins. Proceedings of American Society of Civil Engineers, 83(HY5), 1401–1406.

    Google Scholar 

  • Cassidy, J. J. (1970). Designing spillway crests for high-head operation. Journal of the Hydraulics Division, ASCE, 96(HY3), 745–753.

    Google Scholar 

  • Cassidy, J. J., & Elder, R. A. (1984). Spillways of high dams, Chap 4. In P. Novak (Ed.), Developments in Hydraulic Engineering, Vol. 2. Elsevier Applied Science Publishers.

    Google Scholar 

  • Castro-Orgaz, O. (2009). Hydraulics of developing chute flow. Journal of Hydraulic Research, 47(2), 185–194.

    Article  Google Scholar 

  • Chadwick, A & Morfett, J (1986). Hydraulics in Civil and Environmental Engineering, E & F N Spon.

    Google Scholar 

  • Chamani, M. R., & Rajaratnam, N. (1999). Onset of skimming flow on stepped spillways. Journal of Hydraulic Engineering, 125(9), 969–971.

    Article  Google Scholar 

  • Chanson, H. (1993). Stepped spillway flows and air entrainment. Canadian Journal of Civil Engineering, 20(3), 422–435.

    Article  Google Scholar 

  • Chanson, H. (1994). Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research, 32(2), 213–218.

    Article  Google Scholar 

  • Chanson, H. (1996). Prediction of the transition nappe/skimming flow on a stepped channel. Journal of Hydraulic Research, 34(3), 421–429.

    Article  Google Scholar 

  • Chanson, H. (2002). The Hydraulics of Stepped Chutes and Spillways, A A Balkema.

    Google Scholar 

  • Chinnarasri, C., & Wongwises, S. (2004). Flow regimes and energy loss on chutes with upward inclined steps. Canadian Journal of Civil Engineering, 31(5), 870–879.

    Article  Google Scholar 

  • Chinnarasri, C., & Wongwises, S. (2006). Flow patterns and energy dissipation over various stepped chutes. Journal of Irrigation and Drainage Engineering, 132(1), 70–76.

    Article  Google Scholar 

  • Crookston, B. M., & Tullis, B. P. (2013a) Hydraulic design and analysis of labyrinth weirs. I: Discharge relationships, Journal of Irrigation and Drainage Engineering, 139(5), 363–370.

    Google Scholar 

  • Crookston, B. M., & Tullis, B. P. (2013b) Hydraulic design and analysis of labyrinth weirs. II: Nappe aeration, instability and vibration, Journal of Irrigation and Drainage Engineering, 139(5), 371–377.

    Google Scholar 

  • Dong, Z., Wu, Y., & Zhang, D. (2010). Cavitation characteristics of offset-into-flow and effect of aeration. Journal of Hydraulic Research, 48(1), 74–80.

    Article  Google Scholar 

  • Falvey, H. T. (1980). Air-Water Flow in Hydraulic Structures, Engineering Monograph No. 41, United States Department of the Interior, Bureau of Reclamation, Denver.

    Google Scholar 

  • Falvey, H. T. (1983). Prevention of cavitation on chutes and spillways. In Proceedings of the Conference on Frontiers in Hydraulic Engineering, American Society of Civil Engineers, Cambridge, MA, August, pp. 432–437.

    Google Scholar 

  • Falvey, H. T. (1990). Cavitation in Chute and Spillways, Engineering Monograph No. 42, United States Department of the Interior, Bureau of Reclamation, Denver.

    Google Scholar 

  • Falvey, H. T. (2007). Discussion of “Gas transfer, cavitation and bulking in self-aerated spillway flow”. Journal of Hydraulic Research, 45(6), 859.

    Article  Google Scholar 

  • French, R. H. (1985). Open-Channel Hydraulics. McGraw-Hill.

    Google Scholar 

  • Hager, W. H. (1988). Discharge characteristics of gated standard spillways. Water Power and Dam Construction, 40(1), 15–26.

    MathSciNet  Google Scholar 

  • Haindl, K. (1984). Aeration at hydraulic structures, Chap. 3. In Developments in Hydraulic Engineering, Vol. 2. Elsevier Applied Science Publishers.

    Google Scholar 

  • Henderson, F. M. (1966). Open Channel Flow. Macmillan.

    Google Scholar 

  • Hickox, G. H. (1939). Air entrainment on spillway faces. Civil Engineering, 9, 89–96.

    Google Scholar 

  • ICOLD (1992). Spillways, Shock Waves and Air Entrainment. Bulletin 81, International Commission on Large Dams, Paris.

    Google Scholar 

  • James, C. S., Comninos, M., & Palmer, M. W. (1999). Effects of slope and step size on the hydraulics of stepped chutes. Journal of the South African Institution of Civil Engineering, 41(2), 1–6.

    Google Scholar 

  • James, C. S., Main, A. G., & Moon, J. (2001). Enhanced energy dissipation in stepped chutes. Proceedings of the Institution of Civil Engineers, Water & Maritime Engineering, 148(4), 277–280.

    Google Scholar 

  • Johnson, V. E. (1963). Mechanics of cavitation. Journal of the Hydraulics Division, ASCE, 89(HY3), 251–275.

    Google Scholar 

  • Kells, J. A., & Smith, C. D. (1991). Reduction of cavitation on spillways by induced air entrainment. Canadian Journal of Civil Engineering, 18, 358–377.

    Article  Google Scholar 

  • Khode, B. V., Tembhurkar, A. R., Porey, P. D., & Ingle, R. N. (2012). Experimental studies on flow over labyrinth weir. Journal of Irrigation and Drainage Engineering, 138(6), 548–552.

    Article  Google Scholar 

  • Knight, A. C. E. (1989). Design of efficient side-channel spillway. Journal of Hydraulic Engineering, 115(9), 1275–1289.

    Article  Google Scholar 

  • Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A. J., Singhal, G., & Sharma, N. (2012). Discharge capacity of piano key weirs. Journal of Hydraulic Engineering, 138(2), 199–203.

    Article  Google Scholar 

  • Lesleighter, E. J. (1988). Cavitation in hydraulic structures. In Proceedings of the International Symposium on Model-Prototype Correlation of Hydraulic Structures, ASCE/IAHR, Colorado Springs, USA, August, pp. 74–94.

    Google Scholar 

  • Liu, C. (1983). A study on cavitation inception of isolated surface irregularities. Collected Research Papers, Water Conservancy and Hydroelectric Power Research Institute, Hydropower Press, Beijing, Vol. 13, pp. 36–56 (in Chinese).

    Google Scholar 

  • Machiels, O., Pirotton, M., Pierre, A., Dewals, B., & Erpicum, S. (2014). Experimental parametric study and design of piano key weirs. Journal of Hydraulic Research, 52(3), 326–335.

    Article  Google Scholar 

  • May, R. (1987). Cavitation in hydraulic structures, Report SR79, HR Wallingford, Wallingford, United Kingdom.

    Google Scholar 

  • Murphy, T. E. (1973). Spillway crest design, Report MP H-73-5, U S Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, USA.

    Google Scholar 

  • Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2001). Hydraulic Structures (3rd ed.). London: Unwin Hyman.

    Google Scholar 

  • Reese, J. R., & Maynord, T. M. (1987). Design of spillway crests. Journal of Hydraulic Engineering, 113(4), 476–490.

    Article  Google Scholar 

  • Rutschmann, P., & Volkart, P. (1988). Spillway chute aeration. International Water Power & Dam Construction, January.

    Google Scholar 

  • Schlichting, H. (1968). Boundary Layer Theory. McGraw-Hill.

    Google Scholar 

  • Tadayon, R., & Ramamurthy (2013). Discharge coefficient for siphon spillways. Journal of Irrigation & Drainage Engineering, 139(3), 267–270.

    Google Scholar 

  • U S Army Corps of Engineers. (1995). Hydraulic design of spillways, Technical Engineering and Design Guides as adapted from the U S Army Corps of Engineers, No. 12, ASCE Press, American Society of Civil Engineers, New York.

    Google Scholar 

  • United States Bureau of Reclamation. (1973). Design of Small Dams (2nd ed.). Washington, DC: United States Department of the Interior.

    Google Scholar 

  • Volkart, P., & Rutschmann, P. (1984). Air entrainment devices (air slots), Nr 72, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidgenössischen Technischen Hochschule, Zürich.

    Google Scholar 

  • Warnock, J. E. (1947). Cavitation in hydraulic structures: experiences of the Bureau of Reclamation. Transactions of the American Society of Civil Engineers, 112, 43–58.

    Google Scholar 

  • Wilhelms, S. C., & Gulliver, J. S. (2005a). Bubbles and waves description of self-aerated spillway flow. Journal of Hydraulic Research, 43(5), 522–531.

    Article  Google Scholar 

  • Wilhelms, S. C., & Gulliver, J. S. (2005b). Gas transfer, cavitation, and bulking in self-aerated spillway flow. Journal of Hydraulic Research, 43(5), 532–539.

    Article  Google Scholar 

  • Wood, I. R. (1984). Air entrained flow in hydraulic structures. In H. Kobus (Ed.) Proceedings of the International Association for Hydraulics Research, Symposium on Scale Effects in Modelling Hydraulic Structures. Esslingen, Akademie Verlag.

    Google Scholar 

  • Wood, I. R. (1991). Free surface air entrainment on spillways. In I. R. Wood (Ed.) Air Entrainment in Free Surface Flows: IAHR Hydraulic Structures Design Manual, Vol. 4, Balkema, Rotterdam.

    Google Scholar 

  • Wood, I. R., Ackers, P., & Loveless, J. (1983). General method for critical point on spillways. Journal of Hydraulic Engineering, 109(2), 308–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, C.S. (2020). Spillways. In: Hydraulic Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-34086-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34086-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34085-8

  • Online ISBN: 978-3-030-34086-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics