Skip to main content

Open Channel Transitions

  • Chapter
  • First Online:
Hydraulic Structures
  • 1156 Accesses

Abstract

Transitions connect conveyance structures of different types or with different characteristics. The rapidly varied flow through subcritical transitions is analysed by application of energy and momentum conservation, with empirical input to account for energy loss. Designs to reduce energy loss are advantageous for contractions, but for expansions will increase the boundary shear stress and the extent of the gradually varied profile upstream. Supercritical transitions present problems of wave formation. Formulations are presented for the shock wave front direction and height for straight wall transitions and the variation of depth along the wall in curvilinear transitions. A graphical method for designing straight wall transitions to suppress wave propagation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdo, K., Riahi-Nezhad, C. K., & Imran, J. (2019). Steady supercritical flow in a straight-wall open-channel transition. Journal of Hydraulic Research, 57(5), 647–661.

    Article  Google Scholar 

  • Bhallamudi, S. M., & Chaudhry, M. H. (1992). Computation of flows in open channel transitions. Journal of Hydraulic Research, 30(1), 77–93.

    Article  Google Scholar 

  • Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill.

    Google Scholar 

  • Defina, A., & Susin, F. M. (2006). Multiple states in open channel flow. In M. Brocchini & F Trivellato (Eds.), Vorticity and turbulence effects in fluid structure interactions—Advances in fluid mechanics (pp. 105–130). Wessex Institute of Technology Press.

    Google Scholar 

  • Defina, A., & Viero, D. P. (2010). Open channel flow through a linear contraction. Physics of Fluids, 22(5), 056601.

    Article  Google Scholar 

  • Formica, G. (1955). Esperienze preliminari sulle perdite di carico nei canali dovute a cambiamenti di sezione (Preliminary tests on head losses in channels due to cross-sectional changes), L’Energia elletrica, Milan, 32(7) (cited in Henderson (1966)).

    Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. Macmillan.

    Google Scholar 

  • Ippen, A. T. (1950). Channel transitions and controls. In H. Rouse H (Ed.), Engineering hydraulics (Ch. VIII). Wiley.

    Google Scholar 

  • Jiminez, O. F., & Chaudhry, M. H. (1988). Computation of supercritical free-surface flows. Journal of Hydraulic Engineering, 114(4), 377–395.

    Article  Google Scholar 

  • Mazumder, S. K., & Hager, W. H. (1993). Supercritical expansion flow in Rouse modified and reversed transitions. Journal of Hydraulic Engineering, 119(2), 201–219.

    Article  Google Scholar 

  • Muskatirovic, D., & Batinic, D. (1977). The influence of abrupt changes of channel geometry on hydraulic regime characteristics. In Proceedings 17th IAHR Congress (pp. 397–404). Baden Baden.

    Google Scholar 

  • Najafi-Nejad-Nasser, A., & Li, S. S. (2015). Reduction of flow separation and energy head losses in expansions using a hump. Journal of Irrigation and Drainage Engineering, 141(3), 04014057.

    Article  Google Scholar 

  • Skogerboe, G. V., Austin, L. H., & Bennett, R. S. (1971). Energy loss analysis for open channel expansions. Journal of the Hydraulics Division, ASCE, 97(HY10), 1719–1736.

    Google Scholar 

  • Smith, C. D., & Yu, J. N. G. (1966). Use of baffles in open channel expansions. Journal of the Hydraulics Division, ASCE, 92(HY2), 1–7.

    Google Scholar 

  • Sturm, T. W. (1985). Simplified design of contractions in supercritical flow. Journal of Hydraulic Engineering, 111(5), 871–875.

    Article  Google Scholar 

  • Viero, D. P., & Defina, A. (2019). Multiple states in flow through a sluice gate. Journal of Hydraulic Research, 57(1), 39–50.

    Article  Google Scholar 

  • Vittal, N., & Chiranjeevi, V. V. (1983). Open channel transitions: Rational method of design. Journal of Hydraulic Engineering, 109(1), 99–115.

    Article  Google Scholar 

  • Yarnell, D. L. (1934). Bridge piers as channel obstructions. Technical Bulletin, 442 (US Department of Agriculture).

    Google Scholar 

  • Viero, D. P., & Defina, A. (2017). Extended theory of hydraulic hysteresis in open-channel flow. Journal of Hydraulic Engineering, 143(9), 06017014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, C.S. (2020). Open Channel Transitions. In: Hydraulic Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-34086-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34086-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34085-8

  • Online ISBN: 978-3-030-34086-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics