Advertisement

Conclusion

Chapter
  • 154 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The focus of this thesis has been the study of synchronization phenomena in complex networks and their control through time delay. Starting from a pair of oscillators and proceeding via simple ring networks, we have outlined the progression to complex multilayer structures, examining synchronization in many of its facets. Thereby, Part I has been focused on the study of synchronization phenomena in single-layer systems and Part II has explored synchronization scenarios in multilayer networks as a common description of neuronal brain structures. In this Chapter, the main results of the thesis are summarized and discussed. Furthermore, we give an outlook and consider future research directions.

References

  1. 1.
    Barthó P, Slézia A, Mátyás F, Faradzs-Zade L, Ulbert I, Harris KD, Acsaády L (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82:1367Google Scholar
  2. 2.
    Berner R, Fialkowski J, Kasatkin DV, Nekorkin V, Schöll E, Yanchuk S (2019) Self-similar hierarchical frequency clusters in adaptive networks of phase oscillators (not published)Google Scholar
  3. 3.
    Berner R, Schöll E, Yanchuk S (2019) Multi-clusters in adaptive networks. SIAM J Appl Dyn SystGoogle Scholar
  4. 4.
    Bodor AL, Giber K, Rovó Z, Ulbert I, Acsaády L (2008) Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J Neurosci 28:3090Google Scholar
  5. 5.
    Bogomolov S, Strelkova G, Schöll E, Anishchenko VS (2016) Amplitude and phase chimeras in an ensemble of chaotic oscillators. Tech Phys Lett 42:765–768Google Scholar
  6. 6.
    Bogomolov S, Slepnev A, Strelkova G, Schöll E, Anishchenko VS (2017) Mechanisms of appearance of amplitude and phase chimera states in a ring of nonlocally coupled chaotic systems. Commun Nonlinear Sci Numer Simul 43:25Google Scholar
  7. 7.
    Bokor H, Frere SG, Eyre MD, Slézia A, Ulbert I, Lüthi A, Acsaády L (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 45:929Google Scholar
  8. 8.
    Gollo LL, Mirasso CR, Atienza M, Crespo-Garcia M, Cantero JL (2011) Theta band zero-lag long-range cortical synchronization via hippocampal dynamical relaying. PLoS ONE 6:e17756Google Scholar
  9. 9.
    Groh A, Bokor H, Mease RA, Plattner VM, Hangya B, Deschenes M, Acsaády L (2013) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex 12:3167Google Scholar
  10. 10.
    Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175Google Scholar
  11. 11.
    Halassa MM, Kastner S (2017) Thalamic functions in distributed cognitive control. Nat Neurosci 20:1669–1679Google Scholar
  12. 12.
    Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI (2017) Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 96:062211Google Scholar
  13. 13.
    Lavallee P, Urbain N, Dufresne C, Bokor H, Acsaády L, Deschenes M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25:7489Google Scholar
  14. 14.
    Rovó Z, Ulbert I, Acsaády L (2012) Drivers of the primate thalamus. J Neurosci 32:17894Google Scholar
  15. 15.
    Rovó Z, Mátyás F, Barthó P, Slézia A, Lecci S, Pellegrini C, Astori S, David C, Hangya B, Lüthi A, Acsaády L (2014) Phasic, nonsynaptic GABA-A receptor-mediated inhibition entrains thalamocortical oscillations. J Neurosci 34:7137Google Scholar
  16. 16.
    Vann SD, Nelson AJD (2015) The mammillary bodies and memory: more than a hippocampal relay. In: Progress Brain Research, vol 219. Elsevier, Amsterdam, pp 163–185Google Scholar
  17. 17.
    Wanaverbecq N, Bodor AL, Bokor H, Slézia A, Lüthi A, Acsaády L (2008) Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus. J Neurosci 28:11848Google Scholar
  18. 18.
    Wang X, Vaingankar V, Sanchez CS, Sommer FT, Hirsch JA (2011) Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat Neurosci 14:224Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations