Advertisement

Interplay of Delay and Fractal Topology

Chapter
  • 157 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The topology of the network has been found to play a crucial role in inducing chimera states. While earlier work has focussed on simple nonlocal coupling schemes, we focus on more complex connectivities, reflecting the structure of real-world networks. Of particular interest are networks with hierarchical connectivities, arising in neuroscience as a result of Diffusion Tensor Magnetic Resonance Imaging analysis, showing that the connectivity of the neuron axons network represents a hierarchical (quasi-fractal) geometry. Furthermore, we aim to uncover the impact of time delay on the dynamics in such complex network topologies. We analyze the influence of time delay on chimera states in networks with hierarchical connectivity, and demonstrate how by varying the time delay one can stabilize chimera states in the network.

References

  1. 1.
    Bachmair CA, Schöll E (2014) Nonlocal control of pulse propagation in excitable media. Eur Phys J B 87:276Google Scholar
  2. 2.
    Bick C, Martens EA (2015) Controlling chimeras. New J Phys 17:033030Google Scholar
  3. 3.
    Böhm F, Zakharova A, Schöll E, Lüdge K (2015) Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys Rev E 91:040901(R)Google Scholar
  4. 4.
    Brandstetter SA, Dahlem MA, Schöll E (2010) Interplay of time-delayed feedback control and temporally correlated noise in excitable systems. Philos Trans R Soc A 368:391Google Scholar
  5. 5.
    Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P, Schöll E (2018) Chimera states in brain networks: empirical neural vs. modular fractal connectivity. Chaos 28:045112Google Scholar
  6. 6.
    Crook SM, Ermentrout GB, Vanier MC, Bower JM (1997) The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J Comput Neurosci 4:161–172Google Scholar
  7. 7.
    Expert P, Evans TS, Blondel VD, Lambiotte R (2011) Uncovering space-independent communities in spatial networks. Proc Natl Acad Sci USA 108:7663Google Scholar
  8. 8.
    Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  9. 9.
    FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466Google Scholar
  10. 10.
    Hövel P, Schöll E (2005) Control of unstable steady states by time-delayed feedback methods. Phys Rev E 72:046203Google Scholar
  11. 11.
    Heinrich M, Dahms T, Flunkert V, Teitsworth SW, Schöll E (2010) Symmetry breaking transitions in networks of nonlinear circuit elements. New J Phys 12:113030Google Scholar
  12. 12.
    Hizanidis J, Panagakou E, Omelchenko I, Schöll E, Hövel P, Provata A (2015) Chimera states in population dynamics: networks with fragmented and hierarchical connectivities. Phys Rev E 92:012915Google Scholar
  13. 13.
    Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797Google Scholar
  14. 14.
    Just W, Bernard T, Ostheimer M, Reibold E, Benner H (1997) Mechanism of time-delayed feedback control. Phys Rev Lett 78:203Google Scholar
  15. 15.
    Just W, Reibold E, Kacperski K, Fronczak P, Holyst JA, Benner H (2000) Influence of stable Floquet exponents on time-delayed feedback control. Phys Rev E 61:5045Google Scholar
  16. 16.
    Just W, Benner H, Cv Loewenich (2004) On global properties of time-delayed feedback control: weakly nonlinear analysis. Phys D 199:33Google Scholar
  17. 17.
    Katsaloulis P, Verganelakis DA, Provata A (2009) Fractal dimension and lacunarity of tractography images of the human brain. Fractals 17:181–189Google Scholar
  18. 18.
    Katsaloulis P, Ghosh A, Philippe AC, Provata A, Deriche R (2012) Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI. Eur Phys J B 85:1–7Google Scholar
  19. 19.
    Katsaloulis P, Hizanidis J, Verganelakis DA, Provata A (2012) Complexity measures and noise effects on diffusion magnetic resonance Imaging of the neuron axons network in human brains. Fluctuation Noise Lett 11:1250032Google Scholar
  20. 20.
    Larger L, Penkovsky B, Maistrenko Y (2013) Virtual chimera states for delayed-feedback systems. Phys Rev Lett 111:054103Google Scholar
  21. 21.
    Larger L, Penkovsky B, Maistrenko Y (2015) Laser chimeras as a paradigm for multistable patterns in complex systems. Nat Commun 6:7752Google Scholar
  22. 22.
    Mandelbrot BB (1983) The fractal geometry of nature, 3rd edn. WH Freeman and Comp, New YorkGoogle Scholar
  23. 23.
    Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070Google Scholar
  24. 24.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256Google Scholar
  25. 25.
    Omelchenko I, Omel’chenko OE, Hövel P, Schöll E (2013) When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys Rev Lett 110:224101Google Scholar
  26. 26.
    Omelchenko I, Provata A, Hizanidis J, Schöll E, Hövel P (2015) Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys Rev E 91:022917Google Scholar
  27. 27.
    Omelchenko I, Zakharova A, Hövel P, Siebert J, Schöll E (2015) Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25:083104Google Scholar
  28. 28.
    Omelchenko I, Omel’chenko OE, Zakharova A, Wolfrum M, Schöll E (2016) Tweezers for chimeras in small networks. Phys Rev Lett 116:114101Google Scholar
  29. 29.
    Omelchenko I, Omel’chenko OE, Zakharova A, Schöll E (2018) Optimal design of Tweezer control for chimera states. Phys Rev E 97:012216Google Scholar
  30. 30.
    Omelchenko I, Hülser T, Zakharova A, Schöll E (2019) Control of chimera states in multilayer networks. Front Appl Math Stat 4:67Google Scholar
  31. 31.
    Panaggio MJ, Abrams DM (2015) Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67Google Scholar
  32. 32.
    Provata A, Katsaloulis P, Verganelakis DA (2012) Dynamics of chaotic maps for modelling the multifractal spectrum of human brain diffusion tensor images. Chaos Solitons Fractals 45:174–180Google Scholar
  33. 33.
    Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell’Omo G, Lipp HP, Wikelski M, Vyssotski AL (2016) Evidence that birds sleep in mid-flight. Nat Commun 7:12468Google Scholar
  34. 34.
    Rosin DP, Callan KE, Gauthier DJ, Schöll E (2011) Pulse-train solutions and excitability in an optoelectronic oscillator. Europhys Lett 96:34001Google Scholar
  35. 35.
    Sawicki J, Omelchenko I, Zakharova A, Schöll E (2017) Chimera states in complex networks: interplay of fractal topology and delay. Eur Phys J Spec Top 226:1883–1892Google Scholar
  36. 36.
    Sawicki J, Omelchenko I, Zakharova A, Schöll E (2019) Delay-induced chimeras in neural networks with fractal topology. Eur Phys J B 92:54Google Scholar
  37. 37.
    Schmidt L, Krischer K (2015) Chimeras in globally coupled oscillatory systems: from ensembles of oscillators to spatially continuous media. Chaos 25:064401Google Scholar
  38. 38.
    Schmidt L, Krischer K (2015) Clustering as a prerequisite for chimera states in globally coupled systems. Phys Rev Lett 114:034101Google Scholar
  39. 39.
    Semenova N, Strelkova G, Anishchenko VS, Zakharova A (2017) Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators. Chaos 27:061102Google Scholar
  40. 40.
    Sen A, Dodla R, Johnston G, Sethia GC (2010) Amplitude death, synchrony, and chimera states in delay coupled limit cycle oscillators. In: Atay FM (ed) Complex time-delay systems, vol 16. understanding complex systems. Springer, Berlin, pp 1–43zbMATHGoogle Scholar
  41. 41.
    Sethia GC, Sen A (2014) Chimera states: the existence criteria revisited. Phys Rev Lett 112:144101Google Scholar
  42. 42.
    Shima S, Kuramoto Y (2004) Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys Rev E 69:036213Google Scholar
  43. 43.
    Sieber J, Omel’chenko OE, Wolfrum M (2014) Controlling unstable chaos: stabilizing chimera states by feedback. Phys Rev Lett 112:054102Google Scholar
  44. 44.
    Tsigkri-DeSmedt ND, Hizanidis J, Hövel P, Provata A (2016) Multi-chimera states and transitions in the leaky integrate-and-fire model with excitatory coupling and hierarchical connectivity. Eur Phys J ST 225:1149Google Scholar
  45. 45.
    Ulonska S, Omelchenko I, Zakharova A, Schöll E (2016) Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos 26:094825Google Scholar
  46. 46.
    Watanabe S, Strogatz SH (1993) Integrability of a globally coupled oscillator array. Phys Rev Lett 70:2391Google Scholar
  47. 47.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442Google Scholar
  48. 48.
    Yanchuk S, Wolfrum M, Hövel P, Schöll E (2006) Control of unstable steady states by long delay feedback. Phys Rev E 74:026201Google Scholar
  49. 49.
    Yanchuk S, Perlikowski P (2009) Delay and periodicity. Phys Rev E 79:046221Google Scholar
  50. 50.
    Yeldesbay A, Pikovsky A, Rosenblum M (2014) Chimeralike states in an ensemble of globally coupled oscillators. Phys Rev Lett 112:144103Google Scholar
  51. 51.
    zur Bonsen A, Omelchenko I, Zakharova A, Schöll E (2018) Chimera states in networks of logistic maps with hierarchical connectivities. Eur Phys J B 91:65Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations