Two Coupled Oscillators

Part of the Springer Theses book series (Springer Theses)


We investigate synchronization of two coupled oscillators using the example of organ pipes. It is well-known that synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear. However, we show that already two delay-coupled Van der Pol oscillators in fact appear to be a good model for the occurring dynamical phenomena. We analytically investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data.


  1. 1.
    Abel M, Bergweiler S, Gerhard-Multhaupt R (2006) Synchronization of organ pipes: experimental observations and modeling. J Acoust Soc Am 119:2467–2475Google Scholar
  2. 2.
    Abel M, Ahnert K, Bergweiler S (2009) Synchronization of sound sources. Phys Rev Lett 103:114301Google Scholar
  3. 3.
    Adler R (1973) A study of locking phenomena in oscillators. Proc IEEE 61:1380–1385Google Scholar
  4. 4.
    Bader R (2013) Nonlinearities and synchronization in musical acoustics and music psychology. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Bergweiler S (2006) Körperoszillation und Schallabstrahlung akustischer Wellenleiter unter Berücksichtigung von Wandungseinflüssen und Kopplungseffekten: Verändern Metalllegierung und Wandungsprofil des Rohrresonators den Klang der labialen Orgelpfeife? Ph.D. thesis, Universität PotsdamGoogle Scholar
  6. 6.
    Fabre B, Hirschberg A (2000) Physical modeling of flue instruments: a review of lumped models. Acta Acust 86:599Google Scholar
  7. 7.
    Fischer JL (2014) Nichtlineare Kopplungsmechanismen akustischer Oszillatoren am Beispiel der Synchronisation von Orgelpfeifen. Ph.D. thesis, Universität PotsdamGoogle Scholar
  8. 8.
    Fischer JL, Bader R, Abel M (2016) Aeroacoustical coupling and synchronization of organ pipes. J Acoust Soc Am 140:2344Google Scholar
  9. 9.
    Fletcher NH (1978) Mode locking in nonlinearly excited inharmonic musical oscillators. J Acoust Soc Am 64:1566Google Scholar
  10. 10.
    Flunkert V, Fischer I, Schöll E (2013) Dynamics, control and information in delay-coupled systems. Theme Issue of Phil Trans R Soc A 371:20120465Google Scholar
  11. 11.
    Föllinger O (1993) Nichtlineare Regelungen 2: Harmonische Balance, Popow- und Kreiskriterium, Hyperstabilität, Synthese im Zustandsraum: mit 18 Übungsaufgaben mit Lösungen. De GruyterGoogle Scholar
  12. 12.
    Ghoshal G, Chi L, Barabási AL (2013) Uncovering the role of elementary processes in network evolution. Sci Rep 3:2920Google Scholar
  13. 13.
    Howe MS (2003) Theory of vortex sound, vol 33. Cambridge University Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Kyrychko YN, Blyuss KB, Schöll E (2011) Amplitude death in systems of coupled oscillators with distributed-delay coupling. Eur Phys J B 84:307–315Google Scholar
  15. 15.
    Kyrychko YN, Blyuss KB, Schöll E (2013) Amplitude and phase dynamics in oscillators with distributed-delay coupling. Phil Trans R Soc A 371:20120466Google Scholar
  16. 16.
    Kyrychko YN, Blyuss KB, Schöll E (2014) Synchronization of networks of oscillators with distributed-delay coupling. Chaos 24:043117Google Scholar
  17. 17.
    Pikovsky A, Rosenblum MG, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Rayleigh JWS (1882) On the pitch of organ-pipes. Philos Mag 13:340Google Scholar
  19. 19.
    Sawicki J (2015) Synchronization of organ pipes. Master’s thesis, Technische Universität BerlinGoogle Scholar
  20. 20.
    Sawicki J, Abel M, Schöll E (2015) Synchronization in coupled organ pipes. In: Proceedings of the 7th international conference on physics and control (PhysCon (2015) edited by (IPACS Electronic Library, 2015). Istanbul, TurkeyGoogle Scholar
  21. 21.
    Sawicki J, Abel M, Schöll E (2018) Synchronization of organ pipes. Eur Phys J B 91:24Google Scholar
  22. 22.
    Semenov V, Feoktistov A, Vadivasova T, Schöll E, Zakharova A (2015) Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: theory versus experiment. Chaos 25:033111Google Scholar
  23. 23.
    Stanzial D, Bonsi D, Gonzales D (2001) Nonlinear modelling of the mitnahme-effekt in coupled organ pipes. In: International symposium musical acoustics, vol 108, pp 333Google Scholar
  24. 24.
    Stein S, Luther S, Parlitz U (2017) Impact of viscoelastic coupling on the synchronization of symmetric and asymmetric self-sustained oscillators. New J Phys 19:063040Google Scholar
  25. 25.
    Wirkus S, Rand RH (2002) The dynamics of two coupled van der pol oscillators with delay coupling. Nonlinear Dyn 30:205Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations