Advertisement

Introduction

Chapter
  • 156 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The aim of this introduction is to take a closer look on relations in and between music and physics.

References

  1. 1.
    Adamic LA (1999) The small world web, vol 1696/1999 of Lecture notes in computer science. Springer, BerlinGoogle Scholar
  2. 2.
    Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97Google Scholar
  3. 3.
    Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509Google Scholar
  4. 4.
    Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101Google Scholar
  5. 5.
    Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore ET (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523Google Scholar
  6. 6.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424:175–308Google Scholar
  7. 7.
    Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544:1–122Google Scholar
  8. 8.
    Boccaletti S, Pisarchik AN, del Genio CI, Amann A (2018) Synchronization: from coupled systems to complex networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Chen Q, Chang H, Govindan R, Jamin S, Shenker SJ, Willinger W (2002) The origin of power laws in internet topologies revisited. In: Kermani P (ed) INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings, vol 2. IEEE, pp 608–617Google Scholar
  10. 10.
    de Solla Price DJ (1965) Networks of scientific papers. Science 149:510–515Google Scholar
  11. 11.
    Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290–297Google Scholar
  12. 12.
    Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61Google Scholar
  13. 13.
    Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii Acad Sci Petropolitanae 8:128–140Google Scholar
  14. 14.
    FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466Google Scholar
  15. 15.
    Gao J, Li D, Havlin S (2014) From a single network to a network of networks. Natl Sci Rev 1:346–356Google Scholar
  16. 16.
    Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos Trans R Soc Lond Ser B 355:91–110Google Scholar
  17. 17.
    Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc R Soc B Biol Sci 273:503–511Google Scholar
  18. 18.
    Huygens C (1932) Oeuveres complétes de Christiaan Huygens, vol 17, includes works from 1651 to 1666. In: Nijhoff M (ed) Societe Hollandaise Des Sciences, La HayeGoogle Scholar
  19. 19.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651Google Scholar
  20. 20.
    Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42Google Scholar
  21. 21.
    Kivelä M, Arenas A, Barthélemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271Google Scholar
  22. 22.
    Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Monasson R (1999) Diffusion, localization and dispersion relations on “small-world” lattices. Eur Phys J B 12:555–567Google Scholar
  24. 24.
    Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070Google Scholar
  25. 25.
    Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346Google Scholar
  26. 26.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256Google Scholar
  27. 27.
    Newman MEJ, Barabási AL, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, Princeton, USAzbMATHGoogle Scholar
  28. 28.
    Newman MEJ (2010) Networks: an introduction. Oxford University Press Inc, New YorkCrossRefGoogle Scholar
  29. 29.
    Rapoport A (1957) Contribution to the theory of random and biased nets. Bull Math Biol 19:257–277Google Scholar
  30. 30.
    Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Phys Rev E 67:026112Google Scholar
  31. 31.
    Rheinwalt A, Goswami B, Boers N, Heitzig J, Marwan N, Kurths J (2014) A network of networks approach to investigate the influence of sea surface temperature variability on monsoon systems. In: EGU general assembly conference abstracts, vol 16. Springer, p 8147Google Scholar
  32. 32.
    Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in vitro neuronal networks. Phys Rev E 66:021905Google Scholar
  33. 33.
    Solomonoff R, Rapoport A (1951) Connectivety of random nets. Bull Math Biol 13:107–117Google Scholar
  34. 34.
    Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141Google Scholar
  35. 35.
    Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418Google Scholar
  36. 36.
    Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162Google Scholar
  37. 37.
    van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1:701Google Scholar
  38. 38.
    van der Pol B (1926) On relaxation oscillations. Philos Mag 2:978–992Google Scholar
  39. 39.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442Google Scholar
  40. 40.
    Wiedermann M, Donges JF, Donner RV, Kurths J (2014) Ocean-atmosphere coupling from a climate network perspective. In: EGU general assembly conference abstracts, vol 16, p 11900Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations