Skip to main content

Analysis of Vibration Noise on the Fiber-Optic Gyroscope

  • Chapter
  • First Online:
Book cover Data Analytics for Drilling Engineering

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 655 Accesses

Abstract

The random noise of the sensor is the main cause of the error in navigation accuracy. In addition, strong downhole vibration will generate greater random noise of fiber-optic gyroscope and accelerometer during MWD operation. The random noise in vibration features concerning time series mutation, slowness and periodicity in its varying. The results show a wide internal noise band and the changing of the noise over time. Considering all these features, this section explores with the dynamic Allan variance method the dynamic characteristics of the random noise produced by fiber-optic gyroscope and accelerometer in vibration, to offer theoretical guidance for improving the environmental adaptability of sensors in vibration and offer theoretical support for noise modeling.

Contributions by Lu Wang and Qilong Xue, China University of Geosciences (Beijing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan DW. Statistics of atomic frequency standards. Proc IEEE. 1966;54(2):221–30.

    Article  Google Scholar 

  2. Lawrence CN, Pines DJ. Characterization of ring laser gyro performance using the Allan variance method. J Guid Control Dyn. 1997;20:211–4.

    Article  Google Scholar 

  3. Tehrani MM. Ring laser gyro data analysis with cluster sampling technique. Proceeding SPIE 1983, 0412, https://doi.org/10.1117/12.935818.

  4. IEEE Standard Specification Format Guide and Test Procedure of Single Axis Interferometric Fiber Optic Gyros; IEEE Std 952-1997; The Institute of Electrical and Electronics Engineers, Inc.: New York, 16 September 1997.

    Google Scholar 

  5. Blaser JP, Lockerbie NA, Paik HJ, et al. Eotvos, an inertial instrument for testing the equivalence principle[J]. Adv Space Res. 2003;32(7):1433–6.

    Article  Google Scholar 

  6. Galleani L, Tavella P. The characterization of clock behavior with the dynamic allan variance, proceedings of the 2003IEEE international frequency control symposium and PDA exhibition jointly with the 17th European frequency and time Forum 2003, pp. 239–244.

    Google Scholar 

  7. Galleani L, Tavella P. Tracking nonstationarities in clock noises using the dynamic Allan variance. Proceeding joint FCS-PTTI meeting August 2005, Vancouver, 2005, pp. 392–396.

    Google Scholar 

  8. Galleani L, Tavella E. Interpretation of the dynamic Allan variance of nonstationary clock data. IEEE FCS-EFTF 2007, May 29–June 1 2007, Geneva, pp. 992–997.

    Google Scholar 

  9. Nunzi E, Galleani L, Tavella P. Detection of anomalies in the behavior of atomic clocks. IEEE Trans Instrum Meas. 2007;56(2):523–8.

    Article  Google Scholar 

  10. Sesia I, Galleani L Tavella P. Implementation of the dynamic Allan variance for the Galileo system test bed V2. Frequency control symposium, 2007 joint with the 21st European frequency and time Forum (2007) 946–949.

    Google Scholar 

  11. Sesia I, Galleani L, Tavella P. Implementation of the dynamic allan variance for the galileo system test bed V2. 2007, pp. 946–949.

    Google Scholar 

  12. Galleani L, Tavella P. The dynamic Allan variance. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):450–64.

    Article  Google Scholar 

  13. Galleani L, Tavella P. Fast computation of the dynamic Allan variance. Proceeding IEEE FCS-EFTF, 2009, pp. 685–687.

    Google Scholar 

  14. Galleani L. The dynamic Allan variance II: a fast computational algorithm. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;57(1):182–8.

    Article  Google Scholar 

  15. Galleani L. The dynamic Allan variance III: confidence and detection surfaces. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(8):1550–8.

    Article  Google Scholar 

  16. Sesia I, Galleani L, Tavella P. Application of the dynamic Allan Varinacne for the characterization of space clock behavior. IEEE Trans Aerosp Electron Syst. 2011;47(2):884–95.

    Article  Google Scholar 

  17. Galleani L, Tavella P. Characterization of atomic clock anomalies in the dynamic allan variance domain, 2013 Joint UFFC, EFTF and PFM symposium, pp. 654–648.

    Google Scholar 

  18. Guo W, Xinwu L. Research on stochastic errors of dithered ring laser gyroscope based on dynamic Allan variance [J]. Chin J Lasers. 2010;37(12):2975–9.

    Article  Google Scholar 

  19. Yin L, Xinlin C, Shenming S. Dynamic allan variance analysis for the drift error of fiber optical gyroscope [J]. J Optoelectron Laser. 2008;19(2):183–6.

    Google Scholar 

  20. Xuyou L, Na Z. Analysis of dynamic characteristics of a fiber-optic gyroscope based on dynamic Allan variance [J]. J Harbin Eng Univ. 2011;32(2):183–7.

    Google Scholar 

  21. Na Z, Xuyou L. Research on theoretical improvement of dynamic allan variance and its application [J]. Acta Opt Sin. 2011;31(11):1–6.

    Google Scholar 

  22. Stein SR. The Allan variance-challenges and opportunities. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):540–7.

    Article  Google Scholar 

  23. Wang L, Zhang C, Lin T, Li X, Wang T. Characterization of a Fiber optic gyroscope in a measurement while drilling system with the dynamic Allan variance. Measurement. 2015;75:263–72.

    Article  Google Scholar 

  24. El-Sheimy N, Hou H, Niu X. Analysis and modeling of inertial sensors using Allan variance [J]. IEEE Trans Instrum Meas. January 2008;57(1):140–9.

    Article  Google Scholar 

  25. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros, IEEE Standard 952, 1997, pp. 62–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, Q. (2020). Analysis of Vibration Noise on the Fiber-Optic Gyroscope. In: Data Analytics for Drilling Engineering. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-34035-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34035-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34034-6

  • Online ISBN: 978-3-030-34035-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics