Skip to main content

Prediction of Learning Disorder: A-Systematic Review

  • Conference paper
Advances in Visual Informatics (IVIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11870))

Included in the following conference series:

Abstract

Learning Disorder refers to a number of disorder which may influence the understanding or use of verbal or nonverbal information. The most well-known types of learning disorder involve an issue with reading, writing, listening, and speaking. When we talk about learning disorder, most people only focusing on social development plan. Therefore, in this study, a systematic review was performed to identify, assess and aggregate on the prediction methods used for a predict learning disorder. The main objective of this paper is to, identify the most common prediction methods for learning disorder, in terms of accuracy by using the systematic review technique. From the main objective, we can define the research questions such as, which is the most common and the most accurate prediction methods used for learning disorder. In conclusion, the most common prediction methods for learning disorder which is Decision Tree and Support Vector Machine. For accuracy, Decision Tree, Linear Discriminant Analysis and K-Nearest Neighbor methods have the highest prediction accuracy for a learning disorder. From these findings, this paper can guide others to predict learning disorder by using the most common methods to get the best result in term of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farzi, S., Kianian, S., Rastkhadive, I.: Diagnosis of attention deficit hyperactivity disorder using deep belief network based on greedy approach. In: 5th International Symposium on Computational and Business Intelligence (ISCBI), pp. 96–99, Dubai (2017)

    Google Scholar 

  2. Altay, O., Ulas, M.: Prediction of the autism spectrum disorder diagnosis with linear discriminant analysis classifier and K-nearest neighbor in children. In: 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–4, Antalya (2018)

    Google Scholar 

  3. Chamseddine, A., Sawan, M.: Deep learning based method for output regularization of the seizure prediction classifier. In: 2018 IEEE Life Sciences Conference (LSC), pp. 118–121, Montreal, QC (2018)

    Google Scholar 

  4. Stefanidis, V., Anogianakis, G., Evangelou, A., Poulos, M.: Learning difficulties prediction using multichannel brain evoked potential data. In: Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), pp. 268–272, Sliema (2015)

    Google Scholar 

  5. Liu, W., Yu, X., Raj, B., Yi, L., Zou, X., Li, M.: Efficient autism spectrum disorder prediction with eye movement: a machine learning framework. In: International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 649–655, Xi’an (2015)

    Google Scholar 

  6. Omar, K.S., Mondal, P., Khan, N.S., Rizvi, M.R.K., Islam, M.N.: A machine learning approach to predict autism spectrum disorder. In: International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6, Cox’sBazar, Bangladesh (2019)

    Google Scholar 

  7. Duan, H.: Learning to predict where the children with ASD look. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 704–708, Athens (2018)

    Google Scholar 

  8. Sen, B., Borle, C.N., Greiner, R., Brown, M.R.G.: A general prediction model for the detection of ADHDand Autism using structural and functional MRI. PLOS ONE 13(4), e0194856 (2018)

    Article  Google Scholar 

  9. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Article  Google Scholar 

  10. Pream Sudha, V., Vijaya, M.S.: Machine learning-based model for identification of syndromic autism spectrum disorder. In: Krishna, A.N., Srikantaiah, K.C., Naveena, C. (eds.) Integrated Intelligent Computing, Communication and Security. SCI, vol. 771, pp. 141–148. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8797-4_16

    Chapter  Google Scholar 

  11. Duda, M., Zhang, H., Li, H., Wall, D.P., Burmeister, M., Guan, Y.: Brain-specific functional relationship networks inform autism spectrum disorder gene prediction. Transl. Psychiatry 8(1), 56 (2018)

    Article  Google Scholar 

  12. Usta, M.B., et al.: Use of machine learning methods in prediction of short-term outcome in autism spectrum disorders. Psychiatry Clin. Psychopharmacol. 29, 320–325 (2018)

    Article  Google Scholar 

  13. Yahata, N., et al.: A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7(1), 11254 (2016)

    Article  Google Scholar 

  14. Zhou, Y., Yu, F., Duong, T.: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS ONE 9(6), e90405 (2014)

    Article  Google Scholar 

  15. Sanders, E.A., Berninger, V.W., Abbott, R.D.: Sequential prediction of literacy achievement for specific learning disabilities contrasting in impaired levels of language in grades 4 to 9. J. Learn. Disabil. 51(2), 137–157 (2017)

    Article  Google Scholar 

  16. Baten, E., Desoete, A.: Mathematical (Dis)abilities within the opportunity-propensity model: the choice of math test matters. Front. Psychol. 9 (2018)

    Google Scholar 

  17. Mowlem, F.D., Rosenqvist, M.A., Martin, J., Lichtenstein, P., Asherson, P., Larsson, H.: Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 28(4), 481–489 (2018)

    Article  Google Scholar 

  18. Velki, T., Vrdoljak, G.: Gender as moderator and age as mediator variables in prediction of school adjustment by self-evaluated symptoms of ADHD. Primenjena Psihologija 12(1), 65–83 (2019)

    Article  Google Scholar 

  19. Jacobson, L.A., Schneider, H., Mahone, E.M.: Preschool inhibitory control predicts ADHD group status and inhibitory weakness in school. Arch. Clin. Neuropsychol. 33(8), 1006–1014 (2017)

    Article  Google Scholar 

  20. Björk, A., Rönngren, Y., Selander, J., Vinberg, S., Hellzen, O., Olofsson, N.: Health, lifestyle habits, and physical fitness among adults with ADHD compared with a random sample of a Swedish general population. Soc. Health Vulnerability 9(1), 1553916 (2018)

    Article  Google Scholar 

  21. Haas, S.M., Derefinko, K.J., Waschbusch, D.A.: The use of multi method impulsivity assessment in the prediction of ADHD, conduct problems, and callous-unemotional symptoms. Pers. Individ. Differ. 116, 289–295 (2017)

    Article  Google Scholar 

  22. Wong, H.K., et al.: Personalized medication response prediction for attention-deficit hyperactivity disorder: learning in the model space vs. learning in the data space. Front. Physiol. 8, 199 (2017)

    Article  Google Scholar 

  23. Walker, S.J., Langefeld, C.D., Zimmerman, K., Schwartz, M.Z., Krigsman, A.: A molecular biomarker for prediction of clinical outcome in children with ASD, constipation, and intestinal inflammation. Sci. Rep. 9(1), 5987 (2019)

    Article  Google Scholar 

  24. Julie, M.D., Kannan, B.: Prediction of learning disabilities in school age children using decision tree. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) ASUC/NeCoM/VLSI/WeST/WiMoN -2010. CCIS, vol. 90, pp. 533–542. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14493-6_55

    Chapter  Google Scholar 

  25. Laouris, Y., Aristodemou, E., Makris, P.: Prediction of learning abilities based on a cross-modal evaluation of non-verbal mental attributes using video-game-like interfaces. In: Esposito, A., Vích, R. (eds.) Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions. LNCS (LNAI), vol. 5641, pp. 248–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03320-9_24

    Chapter  Google Scholar 

  26. Rosenblum, S., Ben-Simhon, H.A., Meyer, S., Gal, E.: Predictors of handwriting performance among children with autism spectrum disorder. Res. Autism Spectr. Disord. 60, 16–24 (2019)

    Article  Google Scholar 

  27. Chambon, V., Farrer, C., Pacherie, E., Jacquet, P.O., Leboyer, M., Zalla, T.: Reduced sensitivity to social priors during action prediction in adults with autism spectrum disorders. Cognition 160, 17–26 (2017)

    Article  Google Scholar 

  28. Shui, A.M., Katz, T., Malow, B.A., Mazurek, M.O.: Predicting sleep problems in children with autism spectrum disorders. Res. Dev. Disabil. 83, 270–279 (2018)

    Article  Google Scholar 

  29. Sembiring, S., Zarlis, M., Hartama, D., Ramliana, S., Wani, E.: Prediction of student academic performance by an application of data mining techniques. In: International Conference on Management and Artificial Intelligence IPEDR, vol. 6, pp. 110–114 (2011)

    Google Scholar 

  30. Kitchenham, B.: Procedures for performing systematic reviews, Technical report. Department of Computer Science, Keele University (2004)

    Google Scholar 

  31. Kitchenham, B., et al.: Systematic literature reviews in software engineering - a tertiary study. Inf. Softw. Technol. 52(8), 792–805 (2010)

    Article  Google Scholar 

  32. Vapnik, V.: The support vector method of function estimation. In: Nonlinear Modeling, pp. 55–85. Springer, Boston (1998)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Education under Skim Geran Penyelidikan Fundamental (FRGS) (grant number FRGS/1/2018/ICT04/UKM/02/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ely Salwana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Jamhar, M.A., Salwana, E., Zulkifli, Z., Nayan, N.M., Abdullah, N. (2019). Prediction of Learning Disorder: A-Systematic Review. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2019. Lecture Notes in Computer Science(), vol 11870. Springer, Cham. https://doi.org/10.1007/978-3-030-34032-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34032-2_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34031-5

  • Online ISBN: 978-3-030-34032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics