Skip to main content

Colorful Frontier-Based Search: Implicit Enumeration of Chordal and Interval Subgraphs

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Abstract

This paper considers enumeration of specific subgraphs of a given graph by using a data structure called a zero-suppressed binary decision diagram (ZDD). A ZDD can represent the set of solutions quite compactly. Recent studies have demonstrated that a technique generically called frontier-based search (FBS) is a powerful framework for using ZDDs to enumerate various yet rather simple types of subgraphs. We in this paper, propose colorful FBS, an enhancement of FBS, which enables us to enumerate more complex types of subgraphs than existing FBS techniques do. On the basis of colorful FBS, we design methods that construct ZDDs representing the sets of chordal and interval subgraphs from an input graph. Computer experiments show that the proposed methods run faster than reverse search based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N

    Article  MathSciNet  MATH  Google Scholar 

  2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30(3), 479–513 (1983). https://doi.org/10.1145/2402.322389

    Article  MathSciNet  MATH  Google Scholar 

  3. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–29. Springer, New York, New York, NY (1993). https://doi.org/10.1007/978-1-4613-8369-7_1

    Chapter  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

    Article  MATH  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol. 57). North-Holland Publishing Co., Amsterdam (2004)

    Google Scholar 

  6. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE Trans. Smart Grid 5(1), 102–111 (2014). https://doi.org/10.1109/TSG.2013.2288976

    Article  Google Scholar 

  7. Ishioka, F., Kawahara, J., Mizuta, M., Minato, S., Kurihara, K.: Evaluation of hotspot cluster detection using spatial scan statistic based on exact counting. Jpn. J. Stat. Data Sci. 2(1), 1–15 (2019). https://doi.org/10.1007/s42081-018-0030-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using recursive specifications. TCS Technical Reports TCS-TR-A-13-69 (2013)

    Google Scholar 

  9. Jackowski, Z.: A new characterization of proper interval graphs. Discrete Math. 105(1), 103–109 (1992). https://doi.org/10.1016/0012-365X(92)90135-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawahara, J., Horiyama, T., Hotta, K., Minato, S.: Generating all patterns of graph partitions within a disparity bound. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 119–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_10

    Chapter  Google Scholar 

  11. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumerating all constrained subgraphs with compressed representation. IEICE Trans. Inf. Syst. E100–A(9), 1773–1784 (2017)

    Article  Google Scholar 

  12. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-ticket problem and enumerating letter graphs by augmenting the two representative approaches with ZDDs. In: Phon-Amnuaisuk, S., Au, T.-W., Omar, S. (eds.) CIIS 2016. AISC, vol. 532, pp. 294–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48517-1_26

    Chapter  Google Scholar 

  13. Kiyomi, M., Kijima, S., Uno, T.: Listing chordal graphs and interval graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 68–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_7

    Chapter  Google Scholar 

  14. Kiyomi, M., Uno, T.: Generating chordal graphs included in given graphs. IEICE Trans. Inf. Syst. E89–D(2), 763–770 (2006). https://doi.org/10.1093/ietisy/e89-d.2.763

    Article  Google Scholar 

  15. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.org/10.1109/JSAC.2011.111002

    Article  Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River (2011)

    MATH  Google Scholar 

  17. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350 (2013). https://doi.org/10.1145/2487788.2488173

  18. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)

    Article  MathSciNet  Google Scholar 

  19. Maehara, T., Suzuki, H., Ishihata, M.: Exact computation of influence spread by binary decision diagrams. In: Proceedings of the 26th International Conference on World Wide Web, pp. 947–956 (2017). https://doi.org/10.1145/3038912.3052567

  20. Miller, D.: Multiple-valued logic design tools. In: Proceedings of the 23rd International Symposium on Multiple-Valued Logic, pp. 2–11 (1993). https://doi.org/10.1109/ISMVL.1993.289589

  21. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277 (1993). https://doi.org/10.1145/157485.164890

  22. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_21

    Chapter  Google Scholar 

  23. de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI). http://www.graphclasses.org

  24. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015427

    Chapter  Google Scholar 

  25. Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by JSPS KAKENHI Grant Numbers JP15H05711, JP18K04610, JP16K16006, JP18H04091 and JP19K12098, and NAIST Big Data Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R. (2019). Colorful Frontier-Based Search: Implicit Enumeration of Chordal and Interval Subgraphs. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics