Abstract
This paper considers enumeration of specific subgraphs of a given graph by using a data structure called a zero-suppressed binary decision diagram (ZDD). A ZDD can represent the set of solutions quite compactly. Recent studies have demonstrated that a technique generically called frontier-based search (FBS) is a powerful framework for using ZDDs to enumerate various yet rather simple types of subgraphs. We in this paper, propose colorful FBS, an enhancement of FBS, which enables us to enumerate more complex types of subgraphs than existing FBS techniques do. On the basis of colorful FBS, we design methods that construct ZDDs representing the sets of chordal and interval subgraphs from an input graph. Computer experiments show that the proposed methods run faster than reverse search based algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N
Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30(3), 479–513 (1983). https://doi.org/10.1145/2402.322389
Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–29. Springer, New York, New York, NY (1993). https://doi.org/10.1007/978-1-4613-8369-7_1
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol. 57). North-Holland Publishing Co., Amsterdam (2004)
Inoue, T., et al.: Distribution loss minimization with guaranteed error bound. IEEE Trans. Smart Grid 5(1), 102–111 (2014). https://doi.org/10.1109/TSG.2013.2288976
Ishioka, F., Kawahara, J., Mizuta, M., Minato, S., Kurihara, K.: Evaluation of hotspot cluster detection using spatial scan statistic based on exact counting. Jpn. J. Stat. Data Sci. 2(1), 1–15 (2019). https://doi.org/10.1007/s42081-018-0030-6
Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using recursive specifications. TCS Technical Reports TCS-TR-A-13-69 (2013)
Jackowski, Z.: A new characterization of proper interval graphs. Discrete Math. 105(1), 103–109 (1992). https://doi.org/10.1016/0012-365X(92)90135-3
Kawahara, J., Horiyama, T., Hotta, K., Minato, S.: Generating all patterns of graph partitions within a disparity bound. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 119–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_10
Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enumerating all constrained subgraphs with compressed representation. IEICE Trans. Inf. Syst. E100–A(9), 1773–1784 (2017)
Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-ticket problem and enumerating letter graphs by augmenting the two representative approaches with ZDDs. In: Phon-Amnuaisuk, S., Au, T.-W., Omar, S. (eds.) CIIS 2016. AISC, vol. 532, pp. 294–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48517-1_26
Kiyomi, M., Kijima, S., Uno, T.: Listing chordal graphs and interval graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 68–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_7
Kiyomi, M., Uno, T.: Generating chordal graphs included in given graphs. IEICE Trans. Inf. Syst. E89–D(2), 763–770 (2006). https://doi.org/10.1093/ietisy/e89-d.2.763
Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.org/10.1109/JSAC.2011.111002
Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River (2011)
Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350 (2013). https://doi.org/10.1145/2487788.2488173
Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)
Maehara, T., Suzuki, H., Ishihata, M.: Exact computation of influence spread by binary decision diagrams. In: Proceedings of the 26th International Conference on World Wide Web, pp. 947–956 (2017). https://doi.org/10.1145/3038912.3052567
Miller, D.: Multiple-valued logic design tools. In: Proceedings of the 23rd International Symposium on Multiple-Valued Logic, pp. 2–11 (1993). https://doi.org/10.1109/ISMVL.1993.289589
Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–277 (1993). https://doi.org/10.1145/157485.164890
Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg (2005). https://doi.org/10.1007/11575467_21
de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI). http://www.graphclasses.org
Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015427
Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016)
Acknowledgment
This work was supported in part by JSPS KAKENHI Grant Numbers JP15H05711, JP18K04610, JP16K16006, JP18H04091 and JP19K12098, and NAIST Big Data Project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R. (2019). Colorful Frontier-Based Search: Implicit Enumeration of Chordal and Interval Subgraphs. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-34029-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34028-5
Online ISBN: 978-3-030-34029-2
eBook Packages: Computer ScienceComputer Science (R0)