Skip to main content

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications

  • Conference paper
  • First Online:
Analysis of Experimental Algorithms (SEA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11544))

Included in the following conference series:

  • 633 Accesses

Abstract

This paper proposes efficient split-radix and radix-4 Discrete Cosine Transform (DCT) of types II/III algorithms. The proposed fast split-radix and radix-4 algorithms extend the previous work on the lowest multiplication complexity, self-recursive, radix-2 DCT II/III algorithms. The paper also addresses the self-recursive and stable aspects of split-radix and radix-4 DCT II/III algorithms having simple, sparse, and scaled orthogonal factors. Moreover, the proposed split-radix and radix-4 algorithms attain the lowest theoretical multiplication complexity and arithmetic complexity for 8-point DCT II/III matrices. The factorization corresponding to the proposed DCT algorithms contains sparse and scaled orthogonal matrices. Numerical results are presented for the arithmetic complexity comparison of the proposed algorithms with the known fast and stable DCT algorithms. Execution time of the proposed algorithms is presented while verifying the connection to the order of the arithmetic complexity. Moreover, we will show that the execution time of the proposed split-radix and radix-4 algorithms are more efficient than the radix-2 DCT algorithms. Finally, the implementations of the proposed DCT algorithms are stated using signal-flow graphs.

This work was funded by the Faculty Research Development Program, the Office of Undergraduate Research, and the Office of Provost at Embry-Riddle Aeronautical University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britanak, V.: New generalized conversion method of the MDCT and MDST coefficients in the frequency domain for arbitrary symmetric windowing function. Digit. Sig. Proc. 23, 1783–1797 (2013)

    Article  MathSciNet  Google Scholar 

  2. Britanak, V., Yip, P.C., Rao, K.R.: Discrete Cosine and Sine Transforms: General Properties Fast Algorithms and Integer Approximations. Academic Press, Great Britain (2007)

    Google Scholar 

  3. Chakraborty, S., Rao, K.R.: Fingerprint enhancement by directional filtering. In: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phetchaburi, pp. 1–4, May 2012. https://doi.org/10.1109/ECTICon.2012.6254113

  4. Chen, W.H., Smith, C.H., Fralick, S.: A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)

    Article  Google Scholar 

  5. Duhamel, P.: Implementation of split-radix FFT algorithms for complex, real, and real-symmetric data. IEEE Trans. Acoust. Speech Sig. Process. ASSP 34(2), 285–295 (1986)

    Article  MathSciNet  Google Scholar 

  6. Duhamel, P., Vetterli, M.: Fast Fourier transforms: a tutorial review and a state of the art. Sig. Process. 19(4), 259–299 (1990)

    Article  MathSciNet  Google Scholar 

  7. Fan, D., et al.: Optical identity authentication scheme based on elliptic curve digital signature algorithm and phase retrieval algorithm. Appl. Opt. 52(23), 5645–5652 (2013)

    Article  Google Scholar 

  8. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  9. Han, J., Saxena, A., Melkote, V., Rose, K.: Towards jointly optimal spatial prediction and adaptive transform in video/image coding. IEEE Trans. Image Process. 21(4), 1874–1884 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hsu, H.-W., Liu, C.-M.: Fast radix-q and mixed radix algorithms for type-IV DCT. IEEE Sig. Process. Lett. 15, 910–913 (2008)

    Article  Google Scholar 

  11. Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer arithmetic operations. IEEE Trans. Sig. Process. 55(1), 111–119 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kekre, H.B., Sarode, T.K., Save, J.K.: Column transform based feature generation for classification of image database. Int. J. Appl. Innov. Eng. Manag. (IJAIEM) 3(7), 172–181 (2014)

    Google Scholar 

  13. Kekre, H.B., Sarode, T., Natu, P.: Performance comparison of hybrid wavelet transform formed by combination of different base transforms with DCT on image compression. Int. J. Image Graph. Sig. Process. 6(4), 39–45 (2014)

    Article  Google Scholar 

  14. Kekre, H.B., Solanki, J.K.: Comparative performance of various trigonometric unitary transforms for transform image coding. Int. J. Electron. 44, 305–315 (1978)

    Article  Google Scholar 

  15. Lee, M.H., Khan, M.H.A., Kim, K.J., Park, D.: A fast hybrid jacket-hadamard matrix based diagonal block-wise transform. Sig. Process. Image Commun. 29(1), 49–65 (2014)

    Article  Google Scholar 

  16. Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms with 11 multiplications. In: 1989 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-1989), vol. 2, pp. 988–991 (1989). https://doi.org/10.1109/ICASSP.1989.266596

  17. Ma, J., Plonka, G., Hussaini, M.Y.: Compressive video sampling with approximate message passing decoding. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1354–1364 (2012)

    Article  Google Scholar 

  18. Olshevsky, A., Olshevsky, V., Wang, J.: A comrade-matrix-based derivation of the eight versions of fast cosine and sine transforms. In: Olshevsky, V. (ed.) Fast Algorithms for Structured Matrices: Theory and Applications, CONM, vol. 323, pp. 119–150. AMS Publications, Providence (2003)

    Chapter  Google Scholar 

  19. Plonka, G., Tasche, M.: Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394, 309–345 (2005)

    Article  MathSciNet  Google Scholar 

  20. Perera, S.M., Olshevsky, V.: Fast and stable algorithms for discrete sine transformations having orthogonal factors. In: Cojocaru, M.G., Kotsireas, I.S., Makarov, R.N., Melnik, R.V.N., Shodiev, H. (eds.) Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, vol. 117, pp. 347–354. Springer, Basel (2015). https://doi.org/10.1007/978-3-319-12307-3_50

    Chapter  MATH  Google Scholar 

  21. Perera, S.M.: Signal flow graph approach to efficient and forward stable DST algorithms. In: Proceedings of the 20th ILAS Conference, Leuven, Belgium (2016). Linear Algebra Appl. 542, 360–390 (2017)

    Google Scholar 

  22. Perera, S.M., Madanayake, A., Dornback, N., Udayanga, N.: Design and digital implementation of fast and recursive DCT II-IV algorithms. Circuits Syst. Sig. Process. 38(2), 529–555 (2018). https://doi.org/10.1007/s00034-018-0891-8

    Article  Google Scholar 

  23. Perera, S.M., Olshevsky, V.: Stable, recursive and fast algorithms for discrete sine transformations having orthogonal factors. J. Coupled Syst. Multiscale Dyn. 1(3), 358–371 (2013)

    Article  Google Scholar 

  24. Perera, S.M., Liu, J.: Lowest complexity self recursive radix-2 DCT II/III algorithms. SIAM J. Matrix Anal. Appl. 39(2), 664–682 (2018)

    Article  MathSciNet  Google Scholar 

  25. Perera, S.M.: Signal processing based on stable radix-2 DCT I-IV algorithms having orthogonal factors. Electron. J. Linear Algebra 31, 362–380 (2016)

    Article  MathSciNet  Google Scholar 

  26. Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: The new gold standard for video compression: how does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1(3), 36–46 (2012). https://doi.org/10.1109/MCE.2012.2192754

    Article  Google Scholar 

  27. Püschel, M., Moura, J.M.F.: The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32, 1280–1316 (2003)

    Article  MathSciNet  Google Scholar 

  28. Püschel, M., Moura, J.M.F.: Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs. IEEE Trans. Sig. Process. 56(4), 1502–1521 (2008)

    Article  MathSciNet  Google Scholar 

  29. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform: Algorithm and Applications. Springer, New York (2010). https://doi.org/10.1007/978-1-4020-6629-0

    Book  MATH  Google Scholar 

  30. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, San Diego (1990)

    Book  Google Scholar 

  31. Shao, X., Johnson, S.G.: Type-II/III DCT/DST algorithms with reduced number of arithmetic operations. Sig. Process. 88, 1553–1564 (2008)

    Article  Google Scholar 

  32. Steidl, G., Tasche, M.: A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms. Math. Comput. 56, 281–296 (1991)

    Article  MathSciNet  Google Scholar 

  33. Steidl, G.: Fast radix-p discrete cosine transforms. Appl. Algebra Eng. Commun. Comput. 3(1), 39–46 (1992)

    Article  MathSciNet  Google Scholar 

  34. Strang, G.: The discrete cosine transform. SIAM Rev. 41, 135–147 (1999)

    Article  MathSciNet  Google Scholar 

  35. Suehiro, N., Hatori, M.: Fast algorithms for the DFT and other sinusoidal transforms. IEEE Trans. Acoust. Speech Sig. Process. 34(3), 642–644 (1986)

    Article  Google Scholar 

  36. Tablada, C.J., Bayer, F.M., Cintra, R.J.: A class of DCT approximations based on the Feig-Winograd algorithm. Sig. Process. 113, 38–51 (2015)

    Article  Google Scholar 

  37. Tasche, M., Zeuner, H.: Roundoff error analysis for fast trigonometric transforms. In: Anastassiou, G. (ed.) Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 357–406. Chapman and Hall/CRC Press, Boca Raton (2000)

    Google Scholar 

  38. Tell, E., Seger, O., Liu, D.: A converged hardware solution for FFT, DCT and Walsh transform. In: Proceedings of Seventh International Symposium on Signal Processing and Its Applications, pp. 609–612. IEEE (2003)

    Google Scholar 

  39. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM Publications, Philadelphia (1992)

    Book  Google Scholar 

  40. Veerla, R., Zhang, Z., Rao, K.R.: Advanced image coding and its comparison with various still image codecs. Am. J. Sig. Process. 2(5), 113–121 (2012)

    Article  Google Scholar 

  41. Vetterli, M., Nussabaumer, H.J.: Simple FFT and DCT algorithms with reduced number of operations. Sig. Process. 6, 267–278 (1984)

    Article  MathSciNet  Google Scholar 

  42. Voronenko, Y., Püschel, M.: Algebraic signal processing theory: Cooley-Tukey type algorithms for real DFTs. Trans. Sig. Process. 57(1), 1–19 (2009)

    Article  MathSciNet  Google Scholar 

  43. Wang, Z.: Fast algorithms for the discrete W transform and the discrete Fourier transform. IEEE Trans. Acoust. Speech Sig. Process. 32, 803–816 (1984)

    Article  MathSciNet  Google Scholar 

  44. Wang, Z.: On computing the Fourier and cosine transforms. IEEE Trans. Acoust. Speech Sig. Process. 33, 1341–1344 (1985)

    Article  MathSciNet  Google Scholar 

  45. Yavne, R.: An economical method for calculating the discrete Fourier transform. In: Proceedings of the AFIPS Fall Joint Computer Conference, San Francisco, vol. 33, pp. 115–125, December 1968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirani M. Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

M. Perera, S., Silverio, D., Ogle, A. (2019). Efficient Split-Radix and Radix-4 DCT Algorithms and Applications. In: Kotsireas, I., Pardalos, P., Parsopoulos, K., Souravlias, D., Tsokas, A. (eds) Analysis of Experimental Algorithms. SEA 2019. Lecture Notes in Computer Science(), vol 11544. Springer, Cham. https://doi.org/10.1007/978-3-030-34029-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34029-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34028-5

  • Online ISBN: 978-3-030-34029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics