Skip to main content

Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 41

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 41))

Abstract

Utilization of nanoparticles (NPs) has increased tremendously in recent years by virtue of their unique properties, which can be applied for numerous purposes. Titanium (Ti)/titanium dioxide (TiO2) NPs are among the most widely used NPs for applications including the agriculture sector. Titanium is considered a beneficial element for plant growth and its nano form can be used to improve growth and yield of plants. Research has shown that TiO2 NPs generate both positive as well as a negative impact to plant growth. This review discusses current knowledge of TiO2 NPs including their interactions, transport, and translocation within plants, and future perspectives regarding their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Batley G, Kirby JK, McClaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50(7):1169–1173

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of Nanomaterials in higher plants. Nano 5(2):851–873

    Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  PubMed  Google Scholar 

  • Deepa K, Singha S, Panda T (2014) Doxorubicin nanoconjugates. J Nanosci Nanotechnol 14:892–904

    Article  CAS  PubMed  Google Scholar 

  • Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38(1):31–39

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822

    Article  CAS  PubMed  Google Scholar 

  • Fellmann S, Eichert T (2017) Acute effects of engineered nanoparticles on the growth and gas exchange of Zea mays L. what are the underlying causes? Water Air Soil Pollut 228(5):176

    Article  CAS  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater Lett 75:196–199

    Article  CAS  Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Xing B (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    Article  CAS  PubMed  Google Scholar 

  • Korenkova L, Sebesta M, Urik M, Kolen cik M, Kratosova G, Bujdos M, Vavra I, Dobrocka E (2017) Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agric Scand 67:285–291

    CAS  Google Scholar 

  • Korosi L, Bouderias S, Csepregi K, Bognár B, Teszlák P, Scarpellini A, Jakab G (2019) Nanostructured TiO2-induced photocatalytic stress enhances the antioxidant capacity and phenolic content in the leaves of Vitis vinifera on a genotype-dependent manner. J Photochem Photobiol B Biol 190:137–145

    Article  CAS  Google Scholar 

  • Kumar PV, Pammi SV, Kollu P, Satyanarayan KV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crop Prod 52:562–566

    Article  CAS  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants 3:25–32

    Google Scholar 

  • Marchiol L, Mattiello A, Poscic F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016) Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332

    Article  PubMed Central  CAS  Google Scholar 

  • Menard A, Drobni D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  CAS  PubMed  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered Nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1–25

    Article  CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7(16):172

    PubMed  PubMed Central  Google Scholar 

  • Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9(2):87789

    Article  CAS  Google Scholar 

  • Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S et al (2014) Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–6293

    Article  CAS  PubMed  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Article  Google Scholar 

  • Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2015) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7(1):42–46

    Google Scholar 

  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101

    Article  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ (2012) Eclipta prostrate leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Ramimoghadam D, Bagheri S, Bee S, Hamid A (2014) Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res Int 2014:7

    Article  CAS  Google Scholar 

  • Roopan SM, Bharathi A, Prabhakarn A, Rahuman AA, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim Acta Part A 98:86–90

    Article  CAS  Google Scholar 

  • Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO-nanoparticles by three crop plants. Metallomics 7(3):466–477

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar S, Rajendran A (2018) Biosynthesis of TiO2 nanoparticles using Justicia gendarussa leaves for photocatalytic and toxicity studies. Res Chem Intermed 44(10):5923–5940

    Article  CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46(14):7637–7643

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, Pugazhendhi A (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 80:197–202

    Article  CAS  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220

    Article  CAS  PubMed  Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8:447–451

    CAS  Google Scholar 

  • Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B Biol 171:117–124

    Article  CAS  Google Scholar 

  • Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environ Sci Nano 5(2):257–278

    Article  CAS  Google Scholar 

  • Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2017) Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ Toxicol Chem 36(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • U.S. Geological Survey (2015) Mineral commodity summaries 2015. U.S. Government Printing Office, Washington, DC. https://doi.org/10.3133/70140094

    Book  Google Scholar 

  • Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) Sol–gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide. J Photochem Photobiol A Chem 251:175–181

    Article  CAS  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111:2329–2337

    Article  PubMed  Google Scholar 

  • Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN (2019) Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci 1(4):310

    Article  CAS  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    Article  CAS  PubMed  Google Scholar 

  • Wang TY, Jiang HT, Wan L, Zhao QF, Jiang TY, Wang B, Wang SL (2015) Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater 13:354–363

    Article  CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO 2 nanoparticles with the marine microalga Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–533

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faraz, A., Faizan, M., Fariduddin, Q., Hayat, S. (2020). Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_5

Download citation

Publish with us

Policies and ethics