Skip to main content

Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 41))

Abstract

Nanotechnology is among the most innovative fields of twenty-first century. Nanoparticles (NPs) are organic or inorganic materials having sizes ranging from 1 to 100 nm; in recent years NPs have come into extensive use worldwide. The dramatic increase in use of NPs in numerous applications has greatly increased the likelihood of their release to the environment. Zinc oxide nanoparticles (ZnO-NPs) are considered a ‘biosafe material’ for organisms. Earlier studies have demonstrated the potential of ZnO-NPs for stimulation of seed germination and plant growth as well as disease suppression and plant protection by virtue of their antimicrobial activity. Both positive and negative effects of ZnO NPs on plant growth and metabolism at various developmental periods have been documented. Uptake, translocation and accumulation of ZnO-NPs by plants depend upon the distinct features of the NPs as well as on the physiology of the host plant. This review will contribute to current understanding the fate and behavior of ZnO-NPs in plants, their uptake, translocation and impacts on mitigating several negative plant growth conditions.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of zinc oxide nanoparticle application on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (solanum lycopersicum mill.) under salt stress. Arch Biol Sci 68:723–735

    Article  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics J 9:106–114

    CAS  Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblics Officinalis fruit extract and their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Aravind P, Prasad MNV (2005) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistryand molecular toxicology. Braz J Plant Physiol 17:3–20

    Article  CAS  Google Scholar 

  • Asmub M, Mullenders LHF, Hartwig A (2000) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxico Lett 15(112–113):227–231

    Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  CAS  PubMed  Google Scholar 

  • BCC Research (2014) Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-market-nan021f.html?vsmaid=203/. Accessed 19 Oct 2017

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B Biol Sci 365(1537):61–71

    Article  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  CAS  PubMed  Google Scholar 

  • Biswas P, Wu CY (2005) Critical review: nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Technical Report, Central Science Laboratory, York

    Google Scholar 

  • Brayner R, Dahoumane SA, Yepremian C, Djediat C, Meyer M, Coute A, Fievet F (2010) Zinc oxide nanoparticles: synthesis, characterization and ecotoxicological studies. Langmuir 26:6522–6528

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    Article  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Capaldi Arruda SC, Silva A, D L, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 2059(4411):1144–1147

    Article  Google Scholar 

  • Castillo RR, Lozano D, Gonzalez B, Manzano M, Izquierdo-Barba I, Vallet-Regi M (2019) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 16(4):415–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary D, Basanti B, Singh DJ, Subhash K, Anil P (2018) An insight into in vitro micropropagation studies for banana- review. Int J Agri Sci 10(5):5346–5349

    Google Scholar 

  • Chen C, Liu P, Lu C (2008) Investigation of photocatalytic degradation using nano-sized ZnO catalysts. Chem Eng J 144:509–513

    Article  CAS  Google Scholar 

  • Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterial in higher plants. Nanomaterials 5:851–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly M, Fernandez M, Conde E, Torrent F, Navas JM, Fernandez-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 1(551–552):334–343

    Article  CAS  Google Scholar 

  • de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea- Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Article  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1

    Article  CAS  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy A (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:e111289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elumalai EK, Prasad TNVKV, Hemachandran J, Vivivan Therasa S, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554

    CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticles-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686

    Article  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90

    Article  CAS  Google Scholar 

  • Ghasemi F, Jalal R (2016) Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist 6:118–122

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrients malnutrition through enhancing the nutritional quality of staple foods principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Salah T, Hendawey MH, Borai IH, Mahdi AA (2018) Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr Nanomaterials 3:32–43

    Article  CAS  Google Scholar 

  • Hemanth NKS, Kumar G, Karthik L, Bhaskara RKV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protec 35:64–70

    Article  CAS  Google Scholar 

  • Kool PL, Ortiz MD, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCL2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Fojtik A, Weller H, Henglein A (2000) Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122:507–510

    Article  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Lacerda JS, Martinez HE, Pedrosa AW, Clemente JM, Santos RH, Oliveira GL, Jifon JL (2018) Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sci 58:1360–1370

    Article  CAS  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    Article  CAS  Google Scholar 

  • Lawre S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3:874–881

    Google Scholar 

  • Lee CY, Tseng TY, Li SY, Lin P (2006) Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg0.1Zn0.9O nanowires. J Appl Phys 99:024303

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Su YB, Takahiro M, Fugetsu B (2010) Multi-walled carbon nanotubes induce oxidative stress and vacuolar structure changes to Arabidopsis T87 suspension cells. Nano Biomed 2:170–181

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 NPs on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS, Tarafdar JC (2011) Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Appl Biol Res 13:54–61

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, San Diego, p 651

    Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryol 62:161–165

    Article  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea- Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Natarajan K, Subbalaxmi SV, Ramchandra M (2010) Microbial production of silver nanoparticles. Dig J Nanomater Biostruct 5:135–140

    Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nelson D, Priscyla DM, Oswaldo LA, Gabriel IHDS, Elisa E (2005) Mechanical aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akhtar M, Yun Y (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. International Conference on Environmental Research and Technology (ICERT), Malaysia https://doi.org/10.13140/2.1.2697.8889

  • Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih Y (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Morena ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on vigna radiata: a detailed molecular, biochemical and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014a) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Ramesh P, Rajendran A, Meenakshisundaram M (2014b) Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculatas. J Nanosci Nanotechnol 1:41–45

    Google Scholar 

  • Raskar S, Laware S (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Waris AA (2019) Zinc iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  PubMed  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Sanaeiostovar A, Khoshgoftarmanesh AH, Shariatmadari H, Afyuni M, Schulin R (2012) Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes. J Agron Crop Sci 198:276–285

    Article  CAS  Google Scholar 

  • Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine 12:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Islam NI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  PubMed  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timişoara Ser Biol XVI(2):73–78

    Google Scholar 

  • Shukla AK, Tiwari PK, Prakash C (2014) Micronutrients deficiencies vis-avis food and nutritional security of India. Indian J Fertil 10:94–112

    Google Scholar 

  • Sirelkhatim A, Shahrom M, Azman S, Noor HMK, Chuo AL, Siti KMB, Habsah H, Dasmawati M (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro Nano Lett 7(3):219–242

    Article  CAS  Google Scholar 

  • Singh MV (2009) Micronutrient nutritional problems in soils of India and improvement for human and animal’s health. Indian J Fertil 5(4):11–26

    CAS  Google Scholar 

  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:1–12

    Article  CAS  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47

    Article  CAS  Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) Toxicology 269:160–169

    Article  CAS  PubMed  Google Scholar 

  • Spero JM, Devito B, Theodore L (2000) Regulatory chemical handbook. CRC press, Boca Raton

    Book  Google Scholar 

  • Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol 35(12):1286–1304

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Taheri M, Qarache HA, Qarache AA, Yoosefi M (2015) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1:17–20

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftarmanesh A (2016) Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. J Agric Sci Technol 18:1013–1025

    Google Scholar 

  • Uikey P, Vishwakarma K (2016) Review of zinc oxide (ZnO) nanoparticles applications and properties. Int J Emerg Tech Com Sci Elec 21(2):239

    Google Scholar 

  • Vaseem M, Umar A, Hahn YB (2010) ZnO Nanoparticles: growth, properties and applications. In: Umar A, Hahn Y-B (eds) Metal oxide nanostructures and their applications, 4th edn. American Scientific Publishers, Los Angeles, pp 1–36

    Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404–412

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Jin X, Adams CA, Shi Z, Sun Y (2018) Decreased ZnO nanoparticles phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25:23736–23747

    Article  CAS  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles. Rev Environ Contam Toxicol 230:83–110

    CAS  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faizan, M., Hayat, S., Pichtel, J. (2020). Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_4

Download citation

Publish with us

Policies and ethics