Skip to main content

Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications

  • Chapter
  • First Online:
Membranes for Environmental Applications

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 42))

  • 595 Accesses

Abstract

In this communication, we reviewed various dynamic filtration (DF) modules and their hydrodynamics and applications in wastewater treatment. Firstly, the configuration, operation parameter, and antifouling capacity for different dynamic filtration modules including rotating disk/rotor, rotating membrane, and vibratory systems were introduced. However, local hydrodynamics which could better diagnose the filtration performance were often neglected by the lack of knowledge on local measurement. To complete the knowledge on hydrodynamics, experiments were thus carried out by particle image velocimetry (PIV) technique. The velocity field and velocity profile were presented. Computational fluid dynamics (CFD) simulation was developed with the same working condition as PIV experiments and further discussed the velocity field. Moreover, the applications of dynamic filtration for water treatment were also evaluated. In the food processing wastewater treatment, dynamic filtration exhibited the high membrane permeability and excellent antifouling capacity at 12 times protein concentration process; afterwards most proteins in wastewater was recycled. This work provides guidance for the hydrodynamic mechanism and application in terms of dynamic filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCRSM:

Central composite response surface methodology

CFD:

Computational fluid dynamics

CIP:

Clean in place

COD:

Chemical oxygen demand (mg O2 L−1)

LDA:

Laser doppler anemometry

LDV:

Laser doppler velocimetry

LIF:

Laser-induced fluorescence

MBR:

Membrane bioreactor

MF:

Microfiltration

MWCO:

Molecular weight cutoff

MTV:

Molecular tagging velocimetry

NF:

Nanofiltration

PIV:

Particle image velocimetry

PLIF:

Planar laser-induced fluorescence

RDM:

Rotating disk membrane

RO:

Reverse osmosis

RVF:

Rotating and vibrating filtration

UF:

Ultrafiltration

VSEP:

Vibratory shear-enhanced system

VRR:

Volume reduction rate

References

  • Akoum OA, Jaffrin MY, Ding L, Paullier P, Vanhoutte C (2002) An hydrodynamic investigation of microfiltration and ultrafiltration in a vibrating membrane module. J Membr Sci 197:37–52

    Article  Google Scholar 

  • Akoum O, Jaffrin MY, Lu HD, Frappart M (2004) Treatment of dairy process waters using a vibrating filtration system and NF and RO membranes. J Membr Sci 235:111–122

    Article  CAS  Google Scholar 

  • Akoum O, Richfield D, Jaffrin MY, Ding LH, Swart P (2006) Recovery of trypsin inhibitor and soy milk protein concentration by dynamic filtration. J Membr Sci 279:291–300

    Article  CAS  Google Scholar 

  • Beier SP, Guerra M, Garde A, Jonsson G (2006) Dynamic microfiltration with a vibrating hollow fiber membrane module: filtration of yeast suspensions. Desalination 199:499–500

    Article  CAS  Google Scholar 

  • Chen W, Mo J, Du X, Zhang Z, Zhang W (2019) Biomimetic dynamic membrane for aquatic dye removal. Water Res 151:243–251

    Article  CAS  Google Scholar 

  • Dan-Xun LI, Zhong Q, Ming-Zhong YU, Wang XK (2013) Large-scale particle tracking velocimetry with multi-channel CCD cameras. Int J Sediment Res 28:103–110

    Article  Google Scholar 

  • Ding L, Jaffrin MY (2014) Benefits of high shear rate dynamic nanofiltration and reverse osmosis: a review. Sep Sci Technol 49:1953–1967

    Article  CAS  Google Scholar 

  • Ding LH, Jaffrin MY, Mellal M, He G (2006) Investigation of performances of a multishaft disk (MSD) system with overlapping ceramic membranes in microfiltration of mineral suspensions. J Membr Sci 276:232–240

    Article  CAS  Google Scholar 

  • Ding L, Jaffrin MY, Luo J (2015) Chapter two–dynamic filtration with rotating disks, and rotating or vibrating membranes. Prog Filtr Sep:27–59

    Google Scholar 

  • Fernández P, Riera FA, Álvarez R, Álvarez S (2010) Nanofiltration regeneration of contaminated single-phase detergents used in the dairy industry. J Food Eng 97:319–328

    Article  Google Scholar 

  • Fillaudeau L, Boissier B, Moreau A, Blanpain-Avet P, Ermolaev S, Jitariouk N, Gourdon A (2007) Investigation of rotating and vibrating filtration for clarification of rough beer. J Food Eng 80:206–217

    Article  CAS  Google Scholar 

  • Firdaous L, Dhulster P, Amiot J, Gaudreau A, Lecouturier D, Kapel R, Lutin F, Vézina LP, Bazinet L (2009) Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. J Membr Sci 329:60–67

    Article  CAS  Google Scholar 

  • Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372

    Article  CAS  Google Scholar 

  • He G, Ding LH, Paullier P, Jaffrin MY (2007) Experimental study of a dynamic filtration system with overlapping ceramic membranes and non-permeating disks rotating at independent speeds. J Membr Sci 300:63–70

    Article  CAS  Google Scholar 

  • Jaffrin MY (2008) Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems. J Membr Sci 324:7–25

    Article  CAS  Google Scholar 

  • Jaffrin MY (2012) Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update. Curr Opin Chem Eng 1:171–177

    Article  CAS  Google Scholar 

  • Jiang T, Zhang H, Qiang H, Yang F, Xu X, Du H (2013) Start-up of the anammox process and membrane fouling analysis in a novel rotating membrane bioreactor. Desalination 311:46–53

    Article  CAS  Google Scholar 

  • Kilander J, Rasmuson A (2005) Energy dissipation and macro instabilities in a stirred square tank investigated using an LE PIV approach and LDA measurements. Chem Eng Sci 60:6844–6856

    Article  CAS  Google Scholar 

  • Kruif CGD, Huppertz T, Urban VS, Petukhov AV (2012) Casein micelles and their internal structure. Adv Colloid Interf Sci 99:36–52

    Article  Google Scholar 

  • Lamsal BP, Koegel RG, Gunasekaran S (2007) Some physicochemical and functional properties of alfalfa soluble leaf proteins. LWT Food Sci Technol 40:1520–1526

    Article  CAS  Google Scholar 

  • Li T, Law WK, Cetin M, Fane AG (2013) Fouling control of submerged hollow fibre membranes by vibrations. J Membr Sci 427:230–239

    Article  CAS  Google Scholar 

  • Luo J (2012) Traitement d’effluents industriels par filtration membranaire dynamique à fort cisaillement. Bibliogr

    Google Scholar 

  • Luo J, Ding L, Wan Y, Paullier P, Jaffrin MY (2010) Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater. Chem Eng J 163:307–316

    Article  CAS  Google Scholar 

  • Luo J, Ding LH, Wan Y, Paullier P, Jaffrin MY (2012a) Fouling behavior of dairy wastewater treatment by nanofiltration under shear-enhanced extreme hydraulic conditions. Sep Purif Technol 88:79–86

    Article  CAS  Google Scholar 

  • Luo J, Cao W, Ding LH, Zhu Z (2012b) Treatment of dairy effluent by shear-enhanced membrane filtration: the role of foulants. Sep Purif Technol 96:194–203

    Article  CAS  Google Scholar 

  • Sarkar D, Datta D, Sen D, Bhattacharjee C (2011) Simulation of continuous stirred rotating disk-membrane module: an approach based on surface renewal theory. Chem Eng Sci 66:2554–2567

    Article  CAS  Google Scholar 

  • Sarkar A, Sarkar D, Bhattacharjee C (2012) Design and performance characterization of a new shear enhanced module with inbuilt cleaning arrangement. J Chem Technol Biotechnol 87:1121–1130

    Article  CAS  Google Scholar 

  • Volenec JJ, Cunningham SM, Haagenson DM, Berg WK, Joern BC, Wiersma DW (2002) Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crop Res 75:97–110

    Article  Google Scholar 

  • Vourch M, Balannec B, Chaufer B, Dorange G (2008) Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 219:190–202

    Article  CAS  Google Scholar 

  • Xie X (2017) Investigation of local and global hydrodynamics of a dynamic filtration module (RVF technology) for intensification of industrial bioprocess. INSA-Toulouse

    Google Scholar 

  • Xie Z, Huang J, Xu X, Jin Z (2008) Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem 111:370

    Article  CAS  Google Scholar 

  • Xie X, Le Men C, Dietrich N, Schmitz P, Fillaudeau L (2018) Local hydrodynamic investigation by PIV and CFD within a dynamic filtration unit under laminar flow. Sep Purif Technol 198:38–51

    Article  CAS  Google Scholar 

  • Zamani F, Law AWK, Fane AG (2013) Hydrodynamic analysis of vibrating hollow fibre membranes. J Membr Sci 429:304–312

    Article  CAS  Google Scholar 

  • Zhang W, Luo J, Ding L, Jaffrin MY (2015) A review on flux decline control strategies in pressure-driven membrane processes. In: Proceedings of the 4th international conference on foundations of software science and computation structures, pp 303–317

    Article  CAS  Google Scholar 

  • Zhang W, Grimi N, Jaffrin MY, Ding L, Tang B, Zhang Z (2017a) Optimization of RDM-UF for alfalfa wastewater treatment using RSM. Environ Sci Pollut Res 25:1–9

    Google Scholar 

  • Zhang W, Ding L, Grimi N, Jaffrin MY, Tang B (2017b) A rotating disk ultrafiltration process for recycling alfalfa wastewater. Sep Purif Technol 188

    Article  CAS  Google Scholar 

  • Zhu Z, Wu Q, Di X, Li S, Barba FJ, Koubaa M, Roohinejad S, Xiong X, He J (2017) Multistage recovery process of seaweed pigments: investigation of ultrasound assisted extraction and ultra-filtration performances. Food Bioprod Process 104

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from National Natural Science Foundation of China (No. 51908136), Pearl River Talent Program (2017GC010139), Science and Technology Project of Guangzhou of China (No. 201904010122), and Guangdong Natural Science Foundation of China (No. 2017A030310540 and 2018A0303130036).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, X., Zhang, W., Ding, L., Schmitz, P., Fillaudeau, L. (2020). Hydrodynamic Enhancement by Dynamic Filtration for Environmental Applications. In: Zhang, Z., Zhang, W., Lichtfouse, E. (eds) Membranes for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-33978-4_6

Download citation

Publish with us

Policies and ethics