Skip to main content

Mast Cells and Nanomaterials

  • Chapter
  • First Online:
Interaction of Nanomaterials with the Immune System

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Mast cells are an essential cell type within the immune system, playing a prominent role in a variety of cell functions—both adaptive and innate immune system as well as others. This central role throughout many systems means that any inappropriate modulation of mast cell activation can, and does, contribute to many pathologies, including lung disease, autoimmune disorders, and cancer as examples. There are many exogenous compounds that can lead to activation of mast cells and potentially cause irregular function, one of which are engineered nanomaterials (ENMs). The human population is ubiquitously exposed to a range of ENM at a high rate through exposure mechanisms associated with high mast cell number, making these nanoparticles suspect when considering mast cell dysfunction. Research looking into ENM-induced mast cell pathologies is underwhelming; however; current research on the topic shows a clear ability for ENM to change mast cell activity and must be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kurosawa M, Ishikawa O, Miyachi Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. J Allergy Clin Immunol. 2000;106:S78–84.

    Article  CAS  PubMed  Google Scholar 

  • Abraham D, Oster H, Huber M, Leitges M. The expression pattern of three mast cell specific proteases during mouse development. Mol Immunol. 2007;44:732–40.

    Article  CAS  PubMed  Google Scholar 

  • Alsaleh NB, Persaud I, Brown JM. Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One. 2016;11:e0167366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin K, Janson C, Boman G, Venge P. The extracellular deposition of mast cell products is increased in hypertrophic airways smooth muscles in allergic asthma but not in nonallergic asthma. Allergy. 2005;60:1241–7.

    Article  CAS  PubMed  Google Scholar 

  • Ammendola M, Sacco R, Donato G, Zuccala V, Russo E, Luposella M, Vescio G, Rizzuto A, Patruno R, De Sarro G, et al. Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology. 2013;85:111–6.

    Article  CAS  PubMed  Google Scholar 

  • Ashina K, Tsubosaka Y, Nakamura T, Omori K, Kobayashi K, Hori M, Ozaki H, Murata T. Histamine induces vascular hyperpermeability by increasing blood flow and endothelial barrier disruption in vivo. PLoS One. 2015;10:e0132367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner SA, Zacheja S, Schaffer M, Feilhauer K, Bischoff SC, Lorentz A. Soluble CD14 is essential for lipopolysaccharide-dependent activation of human intestinal mast cells from macroscopically normal as well as Crohn’s disease tissue. Immunology. 2014;143:174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Swindle EJ, Kushnir-Sukhov NM, Holian A, Metcalfe DD. Silica-directed mast cell activation is enhanced by scavenger receptors. Am J Respir Cell Mol Biol. 2007;36:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Caslin HL, Taruselli MT, Haque T, Pondicherry N, Baldwin EA, Barnstein BO, Ryan JJ. Inhibiting glycolysis and ATP production attenuates IL-33-mediated mast cell function and peritonitis. Front Immunol. 2018;9:3026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Abbruzzese JL, Liu YJ, Logsdon CD, Hwu P. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2011;17:7015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC. A mixture of anatase and rutile TiO(2) nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol. 2012;9:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Chang YC, Chang HA, Lin YS, Tsao CW, Shen MR, Chiu WT. Differential Ca(2+) mobilization and mast cell degranulation by FcepsilonRI- and GPCR-mediated signaling. Cell Calcium. 2017;67:31–9.

    Article  CAS  PubMed  Google Scholar 

  • Chernetsova E, Sullivan K, de Nanassy J, Barkey J, Mack D, Nasr A, El Demellawy D. Histologic analysis of eosinophils and mast cells of the gastrointestinal tract in healthy Canadian children. Hum Pathol. 2016;54:55–63.

    Article  PubMed  Google Scholar 

  • Christy AL, Walker ME, Hessner MJ, Brown MA. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun. 2013;42:50–61.

    Article  CAS  PubMed  Google Scholar 

  • Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C, Gelmon K, Chia S, Hayes M. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol. 2004;17:690–5.

    Article  PubMed  Google Scholar 

  • Dahlin JS, Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol Immunol. 2015;63:9–17.

    Article  CAS  PubMed  Google Scholar 

  • de Souza DA Jr, Toso VD, Campos MR, Lara VS, Oliver C, Jamur MC. Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression. PLoS One. 2012;7:e40790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detoraki A, Staiano RI, Granata F, Giannattasio G, Prevete N, de Paulis A, Ribatti D, Genovese A, Triggiani M, Marone G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol. 2009;123:1142–9, 1149 e1141–1145.

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54:997–1007.

    Article  CAS  PubMed  Google Scholar 

  • Duke KS, Taylor-Just AJ, Ihrie MD, Shipkowski KA, Thompson EA, Dandley EC, Parsons GN, Bonner JC. STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes. Part Fibre Toxicol. 2017;14:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebenezer AJ, Prasad K, Rajan S, Thangam EB. Silencing of H4R inhibits the production of IL-1beta through SAPK/JNK signaling in human mast cells. J Recept Signal Transduct Res. 2018;38:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Ellis EF, Wei EP, Kontos HA. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. Am J Phys. 1979;237:H381–5.

    CAS  Google Scholar 

  • Forward NA, Furlong SJ, Yang Y, Lin TJ, Hoskin DW. Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction. J Immunol. 2009;183:3014–22.

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K. Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett. 2016;257:23–37.

    Article  CAS  PubMed  Google Scholar 

  • Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka M, Zazara DE, Lilis I, et al. Mast cells mediate malignant pleural effusion formation. J Clin Invest. 2015;125:2317–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Godot V, Arock M, Garcia G, Capel F, Flys C, Dy M, Emilie D, Humbert M. H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol. 2007;120:827–34.

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Pfeiffer JR, Lee RJ, Kusewitt DF, Martinez AM, Foutz T, Wilson BS, Oliver JM. MEK and ERK activation in ras-disabled RBL-2H3 mast cells and novel roles for geranylgeranylated and farnesylated proteins in fc epsilonRI-mediated signaling. J Immunol. 1998;161:6733–44.

    CAS  PubMed  Google Scholar 

  • Grashoff WF, Sont JK, Sterk PJ, Hiemstra PS, de Boer WI, Stolk J, Han J, van Krieken JM. Chronic obstructive pulmonary disease: role of bronchiolar mast cells and macrophages. Am J Pathol. 1997;151:1785–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grutzkau A, Kruger-Krasagakes S, Baumeister H, Schwarz C, Kogel H, Welker P, Lippert U, Henz BM, Moller A. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell. 1998;9:875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gschwandtner M, Paulitschke V, Mildner M, Brunner PM, Hacker S, Eisenwort G, Sperr WR, Valent P, Gerner C, Tschachler E. Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells. Allergy. 2017;72:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008;112:1269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingason AB, Mechmet F, Atacho DAM, Steingrimsson E, Petersen PH. Distribution of mast cells within the mouse heart and its dependency on Mitf. Mol Immunol. 2019;105:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Irman-Florjanc T, Erjavec F. Compound 48/80 and substance P induced release of histamine and serotonin from rat peritoneal mast cells. Agents Actions. 1983;13:138–41.

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, Ozaki H, Murata T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014;74:3011–9.

    Article  CAS  PubMed  Google Scholar 

  • Jandl K, Stacher E, Balint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, et al. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol. 2016;137:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Shelburne CP, Li G, Potts EN, Riebe KJ, Sempowski GD, Foster WM, Abraham SN. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J Clin Invest. 2017;127:3913.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep. 2017;7:43570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, Athanassiou A, Theoharides TC. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol. 2003;171:4830–6.

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Kim S, Lee KH, Jin S, Kim SH, Lee K, Jeon H, Song YG, Lee SW, Seo J, et al. 5 nm silver nanoparticles amplify clinical features of atopic dermatitis in mice by activating mast cells. Small. 2017;13.

    Google Scholar 

  • Kashem SW, Subramanian H, Collington SJ, Magotti P, Lambris JD, Ali H. G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: roles of Mas-related genes MrgX1 and MrgX2. Eur J Pharmacol. 2011;668:299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama I, Yokozeki H, Nishioka K. Mast-cell-derived mediators induce epidermal cell proliferation: clue for lichenified skin lesion formation in atopic dermatitis. Int Arch Allergy Immunol. 1992;98:410–4.

    Article  CAS  PubMed  Google Scholar 

  • Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3)(3)/ST(2) axis. Small. 2012;8:2904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur D, Gomez E, Doe C, Berair R, Woodman L, Saunders R, Hollins F, Rose FR, Amrani Y, May R, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015;70:556–67.

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Seo JH, Kim HM, Jeong HJ. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells. J Biomater Appl. 2016;30:1407–16.

    Article  CAS  PubMed  Google Scholar 

  • Kirshenbaum AS, Swindle E, Kulka M, Wu Y, Metcalfe DD. Effect of lipopolysaccharide (LPS) and peptidoglycan (PGN) on human mast cell numbers, cytokine production, and protease composition. BMC Immunol. 2008;9:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondeti V, Al-Azzam N, Duah E, Thodeti CK, Boyce JA, Paruchuri S. Leukotriene D4 and prostaglandin E2 signals synergize and potentiate vascular inflammation in a mast cell-dependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3. J Allergy Clin Immunol. 2016;137:289–98.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Konno S, Takahashi A, Plunkett B, Rittling SR, Matsui Y, Kon S, Morimoto J, Uede T, Matsukura S, et al. Regulatory role of DC-derived osteopontin in systemic allergen sensitization. Eur J Immunol. 2009;39:3323–30.

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, Xu D, Wang F, Shi X, Liu D, et al.. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjogren’s syndrome. Cell Mol Immunol. 2019; https://doi.org/10.1038/s41423-019-0227-z. [Epub ahead of print]

  • Love KS, Lakshmanan RR, Butterfield JH, Fox CC. IFN-gamma-stimulated enhancement of MHC class II antigen expression by the human mast cell line HMC-1. Cell Immunol. 1996;170:85–90.

    Article  CAS  PubMed  Google Scholar 

  • Martino L, Masini M, Bugliani M, Marselli L, Suleiman M, Boggi U, Nogueira TC, Filipponi F, Occhipinti M, Campani D, et al. Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia. 2015;58:2554–62.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest. 2001;108:1865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast cell-derived histamine regulates liver ketogenesis via oleoylethanolamide signaling. Cell Metab. 2019;29:91–102 e105.

    Article  CAS  PubMed  Google Scholar 

  • Monneret G, Gravel S, Diamond M, Rokach J, Powell WS. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood. 2001;98:1942–8.

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Arae K, Unno H, Miyauchi K, Toyama S, Nambu A, Oboki K, Ohno T, Motomura K, Matsuda A, et al. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity. 2015;43:175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ. IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol. 2016;38:581–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol. 2008;181:7480–8.

    Article  CAS  PubMed  Google Scholar 

  • Nakae S, Ho LH, Yu M, Monteforte R, Iikura M, Suto H, Galli SJ. Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. J Allergy Clin Immunol. 2007;120:48–55.

    Article  CAS  PubMed  Google Scholar 

  • Nakae S, Suto H, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc Natl Acad Sci U S A. 2005;102:6467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson G, Johnell M, Hammer CH, Tiffany HL, Nilsson K, Metcalfe DD, Siegbahn A, Murphy PM. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol. 1996;157:1693–8.

    CAS  PubMed  Google Scholar 

  • Ningyan G, Xu Y, Hongfei S, Jingjing C, Min C. The role of macrophage migration inhibitory factor in mast cell-stimulated fibroblast proliferation and collagen production. PLoS One. 2015;10:e0122482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozdemir O. Flow cytometric mast cell-mediated cytotoxicity assay: a three-color flow cytometric approach using monoclonal antibody staining with annexin V/propidium iodide co-labeling to assess human mast cell-mediated cytotoxicity by fluorosphere-adjusted counts. J Immunol Methods. 2011;365:166–73.

    Article  CAS  PubMed  Google Scholar 

  • Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997;99:1492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri N, Roche PA. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci U S A. 2008;105:2580–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raithel M, Matek M, Baenkler HW, Jorde W, Hahn EG. Mucosal histamine content and histamine secretion in Crohn’s disease, ulcerative colitis and allergic enteropathy. Int Arch Allergy Immunol. 1995;108:127–33.

    Article  CAS  PubMed  Google Scholar 

  • Rao Q, Chen Y, Yeh CR, Ding J, Li L, Chang C, Yeh S. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERbeta/CCL2/CCR2 EMT/MMP9 signals. Oncotarget. 2016;7:7842–55.

    PubMed  Google Scholar 

  • Ravindran A, Ronnberg E, Dahlin JS, Mazzurana L, Safholm J, Orre AC, Al-Ameri M, Peachell P, Adner M, Dahlen SE, et al. An optimized protocol for the isolation and functional analysis of human lung mast cells. Front Immunol. 2018;9:2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringvall M, Ronnberg E, Wernersson S, Duelli A, Henningsson F, Abrink M, Garcia-Faroldi G, Fajardo I, Pejler G. Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan. J Allergy Clin Immunol. 2008;121:1020–6.

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, Das M, Dwivedi PD. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 2014;26:159–72.

    Article  CAS  PubMed  Google Scholar 

  • Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179:665–72.

    Article  CAS  PubMed  Google Scholar 

  • Rydman EM, Ilves M, Koivisto AJ, Kinaret PA, Fortino V, Savinko TS, Lehto MT, Pulkkinen V, Vippola M, Hameri KJ, et al. Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol. 2014;11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabareeswaran A, Ansar EB, Harikrishna Varma PR, Mohanan PV, Kumary TV. Effect of surface-modified superparamagnetic iron oxide nanoparticles (SPIONS) on mast cell infiltration: an acute in vivo study. Nanomedicine. 2016;12:1523–33.

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Ishizaka T, Ishizaka K. Mast cells and IgE: from history to today. Allergol Int. 2013;62:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Salamon P, Shefler I, Moshkovits I, Munitz A, Horwitz Klotzman D, Mekori YA, Hershko AY. IL-33 and IgE stimulate mast cell production of IL-2 and regulatory T cell expansion in allergic dermatitis. Clin Exp Allergy. 2017;47:1409–16.

    Article  CAS  PubMed  Google Scholar 

  • Samoszuk M, Kanakubo E, Chan JK. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts. BMC Cancer. 2005;5:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secor VH, Secor WE, Gutekunst CA, Brown MA. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med. 2000;191:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Pages M, Torres R, Plaza J, Herrerias A, Costa-Farre C, Marco A, Jimenez M, Maurer M, Picado C, de Mora F. Activation of the Prostaglandin E2 receptor EP2 prevents house dust mite-induced airway hyperresponsiveness and inflammation by restraining mast cells’ activity. Clin Exp Allergy. 2015;45:1590–600.

    Article  CAS  PubMed  Google Scholar 

  • Shikotra A, Ohri CM, Green RH, Waller DA, Bradding P. Mast cell phenotype, TNF alpha expression and degranulation status in non-small cell lung cancer. Sci Rep. 2016;6:38352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa C, Kanaya T, Hachisuka M, Ishiwata K, Hisaeda H, Kurashima Y, Kiyono H, Yoshimoto T, Kaisho T, Ohno H. Mast cells are crucial for induction of group 2 innate lymphoid cells and clearance of helminth infections. Immunity. 2017;46:863–74 e864.

    Article  CAS  PubMed  Google Scholar 

  • Slodka A, Wiktorska M, Brzezinska-Blaszczyk E. IgE by itself affects mature rat mast cell preformed and de novo-synthesized mediator release and amplifies mast cell migratory response. PLoS One. 2013;8:e79286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasikowska-Kanicka O, Danilewicz M, Glowacka A, Wagrowska-Danilewicz M. Mast cells and eosinophils are involved in activation of ulcerative colitis. Adv Med Sci. 2012;57:230–6.

    Article  CAS  PubMed  Google Scholar 

  • Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast cell-associated TNF promotes dendritic cell migration. J Immunol. 2006;176:4102–12.

    Article  CAS  PubMed  Google Scholar 

  • Szebeni J, Alving CR, Rosivall L, Bunger R, Baranyi L, Bedocs P, Toth M, Barenholz Y. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res. 2007;17:107–17.

    Article  CAS  PubMed  Google Scholar 

  • Tahara K, Tadokoro S, Yamamoto H, Kawashima Y, Hirashima N. The suppression of IgE-mediated histamine release from mast cells following exocytic exclusion of biodegradable polymeric nanoparticles. Biomaterials. 2012;33:343–51.

    Article  CAS  PubMed  Google Scholar 

  • Talahalli R, Zarini S, Sheibani N, Murphy RC, Gubitosi-Klug RA. Increased synthesis of leukotrienes in the mouse model of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010;51:1699–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toms R, Weiner HL, Johnson D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J Neuroimmunol. 1990;30:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are mast cells MASTers in cancer? Front Immunol. 2017;8:424.

    PubMed  PubMed Central  Google Scholar 

  • Visciano C, Liotti F, Prevete N, Cali G, Franco R, Collina F, de Paulis A, Marone G, Santoro M, Melillo RM. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene. 2015;34:5175–86.

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Tedla N, Lloyd AR, Wakefield D, McNeil PH. Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J Clin Invest. 1998;102:1617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingard CJ, Walters DM, Cathey BL, Hilderbrand SC, Katwa P, Lin S, Ke PC, Podila R, Rao A, Lust RM, et al. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology. 2011;5:531–45.

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Nishimoto H, Hong H, Kitaura J, Nunomura S, Maeda-Yamamoto M, Kawakami Y, Lowell CA, Ra C, Kawakami T. Positive and negative regulation of mast cell activation by Lyn via the FcepsilonRI. J Immunol. 2005;175:6885–92.

    Article  CAS  PubMed  Google Scholar 

  • Yamaki K, Yoshino S. Comparison of inhibitory activities of zinc oxide ultrafine and fine particulates on IgE-induced mast cell activation. Biometals. 2009;22:1031–40.

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Chen HZ, Huang YT, Hsieh CW, Wung BS. Lycopene inhibits NF-kappaB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells. Int J Mol Med. 2017;39:1533–450.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Baumgartner RA, Yamada K, Beaven MA. Mitogen-activated protein (MAP) kinase regulates production of tumor necrosis factor-alpha and release of arachidonic acid in mast cells. Indications of communication between p38 and p42 MAP kinases. J Biol Chem. 1997;272:13397–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhuravskii S, Yukina G, Kulikova O, Panevin A, Tomson V, Korolev D, Galagudza M. Mast cell accumulation precedes tissue fibrosis induced by intravenously administered amorphous silica nanoparticles. Toxicol Mech Methods. 2016;26:260–9.

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ. Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A. 2003;100:10043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendoza, R.P., Brown, J.M. (2020). Mast Cells and Nanomaterials. In: Bonner, J., Brown, J. (eds) Interaction of Nanomaterials with the Immune System. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-33962-3_4

Download citation

Publish with us

Policies and ethics