Advertisement

In-Bore Experimental Validation of Active Compensation and Membrane Puncture Detection for Targeted MRI-Guided Robotic Prostate Biopsy

  • Marek WartenbergEmail author
  • Katie Gandomi
  • Paulo Carvalho
  • Joseph Schornak
  • Niravkumar Patel
  • Iulian Iordachita
  • Clare Tempany
  • Nobuhiko Hata
  • Junichi Tokuda
  • Gregory S. Fischer
Conference paper
  • 30 Downloads
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 11)

Abstract

It is estimated that in the United States there will be 164,690 new cases and 29,430 deaths from prostate cancer in 2018 [1]. Trans-Rectal Ultrasound (TRUS) has typically been used to facilitate sampling of up to twenty biopsy cores, but due to variable prostate size this technique often still misses clinically significant cancers [2]. Instead, MRI provides higher image quality and multiparametric imaging, allowing for procedures with fewer needle insertions via direct targeting of suspicious lesions.

References

  1. 1.
    Society, A.C.: Cancer facts and figures 2018. American Cancer Society (2018)Google Scholar
  2. 2.
    Djavan, B., Margreiter, M.: Biopsy standards for detection of prostate cancer. World J. Urol. 25(1), 11–17 (2007)CrossRefGoogle Scholar
  3. 3.
    Pacchierotti, C., Abayazid, M., Misra, S., Prattichizzo, D.: Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans. Haptics 7(4), 551–556 (2014)CrossRefGoogle Scholar
  4. 4.
    Abayazid, M., Roesthuis, R.J., Reilink, R., Misra, S.: Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Rob. 29(2), 542–553 (2013)CrossRefGoogle Scholar
  5. 5.
    Tse, Z.T.H., Elhawary, H., Rea, M., Davies, B., Young, I., Lamperth, M., et al.: Haptic needle unit for mr-guided biopsy and its control. IEEE/ASME Trans. Mechatron. 17(1), 183–187 (2012)CrossRefGoogle Scholar
  6. 6.
    Coles, T.R., Meglan, D., John, N.W.: The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans. Haptics 4(1), 51–66 (2011)CrossRefGoogle Scholar
  7. 7.
    Troccaz, J., Peshkin, M., Davies, B.: Guiding systems for computeraided surgery: introducing synergistic devices and discussing the different approaches. Med. Image Anal. 2(2), 101–119 (1988)CrossRefGoogle Scholar
  8. 8.
    Patel, N., Li, G., Shang, W., Wartenberg, M., Heffter, T., Burdette, E., Iordachita, I., Tokuda, J., Hata, N., Tempany, C., Fischer, G.: System integration and preliminary clinical evaluation of a robotic system for mri guided transperineal prostate biopsy (accepted). J. Med. Robot. Res. 4(02), 1950001 (2018)CrossRefGoogle Scholar
  9. 9.
    Tokuda, J., Tuncali, K., Li, N., G an Patel, Heffter, T., Fischer, G., Iordachita, I., Burdette, E., Hata, N., Tempany, C.: In-bore mri-guided transperineal prostate biopsy using 4-dof needle-guide manipulator. In: International Society for Magnetic Resonance in Medicine, Annual Meeting (2016)Google Scholar
  10. 10.
    Wartenberg, M., Schornak, J., Carvalho, P., Patel, N., Iordachita, I., Tempany, C., Hata, N., Tokuda, J., Fischer, G.: Closed-loop autonomous needle steering during cooperatively controlled needle insertions for MRI-guided pelvic interventions. In: The 10th Hamlyn Symposium on Medical Robotics, pp. 33–34 (2017)Google Scholar
  11. 11.
    Wartenberg, M., Schornak, J., Gandomi, K., Carvalho, P., Nycz, C., Patel, N., Iordachita, I., Tempany, C., Hata, N., Tokuda, J., Fischer, G.S.: Closed-loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion. Ann. Biomed. Eng. 46(10), 1582–1594 (2018)CrossRefGoogle Scholar
  12. 12.
    Barbe, L., Bayle, B., de Mathelin, M., Gangi, A.: In vivo model estimation and haptic characterization of needle insertions. Int. J. Robot. Res. 26(11–12), 1283–1301 (2007)CrossRefGoogle Scholar
  13. 13.
    Stoianovici, D., Jun, C., Lim, S., Li, P., Petrisor, D., Fricke, S., Sharma, K., Cleary, K.: Multi-imager compatible, mr safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1), 165–177 (2017)CrossRefGoogle Scholar
  14. 14.
    National Electrical Manufacturers Association Std. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. Google Scholar
  15. 15.
    Krieger, A., Song, S.E., Cho, N.B., Iordachita, I.I., Guion, P., Fichtinger, G., Whitcomb, L.L.: Development and evaluation of an actuated mri-compatible robotic system for mri-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1), 273–284 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marek Wartenberg
    • 1
    Email author
  • Katie Gandomi
    • 1
  • Paulo Carvalho
    • 1
  • Joseph Schornak
    • 1
  • Niravkumar Patel
    • 2
  • Iulian Iordachita
    • 2
  • Clare Tempany
    • 3
  • Nobuhiko Hata
    • 3
  • Junichi Tokuda
    • 3
  • Gregory S. Fischer
    • 1
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations