Skip to main content

Any-Axis Tensegrity Rolling via Symmetry-Reduced Reinforcement Learning

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 11))

Abstract

Tensegrity rovers incorporate design principles that give rise to many desirable properties, such as adaptability and robustness, while also creating challenges in terms of locomotion control. A recent milestone in this area combined reinforcement learning and optimal control to effect fixed-axis rolling of NASA’s 6-bar spherical tensegrity rover prototype, SUPERball, with use of 12 actuators. The new 24-actuator version of SUPERball presents the potential for greatly increased locomotive abilities, but at a drastic nominal increase in the size of the data-driven control problem. This paper is focused upon unlocking those abilities while crucially moderating data requirements by incorporating symmetry reduction into the controller design pipeline, along with other new considerations. Experiments in simulation and on the hardware prototype demonstrate the resulting capability for any-axis rolling on the 24-actuator version of SUPERball, such that it may utilize diverse ground-contact patterns to smoothly locomote in arbitrary directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NASA Tensegrity Robotics Toolkit. https://ti.arc.nasa.gov/tech/asr/groups/intelligent-robotics/tensegrity/NTRT/

  2. Bliss, T., Iwasaki, T., Bart-Smith, H.: Central pattern generator control of a tensegrity swimmer. Trans. Mech. 18(2), 586–597 (2013)

    Article  Google Scholar 

  3. Iscen, A., Caluwaerts, K., Bruce, J., Agogino, A., SunSpiral, V., Tumer, K.: Learning tensegrity locomotion using open-loop control signals and coevolutionary algorithms. Artif. Life 21(2), 119–140 (2015)

    Article  Google Scholar 

  4. Khazanov, M., Jocque, J., Rieffel, J.: Developing morphological computation in tensegrity robots for controllable actuation. In: 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1049–1052. ACM, New York (2014). https://doi.org/10.1145/2598394.2605680

  5. Kim, K., Agogino, A.K., Toghyan, A., Moon, D., Taneja, L., Agogino, A.M.: Robust learning of tensegrity robot control for locomotion through form-finding. In: IROS (2015)

    Google Scholar 

  6. Koizumi, Y., Shibata, M., Hirai, S.: Rolling tensegrity driven by pneumatic soft actuators. In: ICRA, pp. 1988–1993 (2012). https://doi.org/10.1109/ICRA.2012.6224834

  7. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Littlefield, Z., Surovik, D., Wang, W., Bekris, K.E.: From quasi-static to kinodynamic planning for spherical tensegrity locomotion. In: International Symposium on Robotics Research (ISRR), Puerto Varas, Chile (2017)

    Google Scholar 

  9. Mirletz, B., Bhandal, P., Adams, R.D., Agogino, A.K., Quinn, R.D., SunSpiral, V.: Goal directed CPG based control for high DOF tensegrity spines traversing irregular terrain. Soft Robot. 2, 165–176 (2015)

    Article  Google Scholar 

  10. Mirletz, B.T., Park, I.W., Quinn, R.D., SunSpiral, V.: Towards bridging the reality gap between tensegrity simulation and robotic hardware. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5357–5363. IEEE (2015)

    Google Scholar 

  11. Montgomery, W., Ajay, A., Finn, C., Abbeel, P., Levine, S.: Reset-free guided policy search: efficient deep reinforcement learning with stochastic initial states. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3373–3380 (2017). https://doi.org/10.1109/ICRA.2017.7989383

  12. Paul, C., Valero-Cuevas, F.J., Lipson, H.: Design and control of tensegrity robots for locomotion. TRO 22(5) (2006). https://doi.org/10.1109/TRO.2006.878980

    Article  Google Scholar 

  13. Rovira, A.G., Mirats Tur, J.M.: Control and simulation of a tensegrity-based mobile robot. RAS 57(5), 526–535 (2009)

    Google Scholar 

  14. Sultan, C., Skelton, R.: Deployment of tensegrity structures. Int. J. Solids Struct. 40(18), 4637–4657 (2003). https://doi.org/10.1016/S0020-7683(03)00267-1

    Article  MATH  Google Scholar 

  15. Surovik, D.A., Bekris, K.E.: Symmetric reduction of tensegrity rover dynamics for efficient data-driven control. In: ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments (2018)

    Google Scholar 

  16. Vespignani, M., Ercolani, C., Friesen, J.M., Bruce, J.: Steerable locomotion controller for six-strut icosahedral tensegrity robots. In: IROS (2018)

    Google Scholar 

  17. Vespignani, M., Friesen, J.M., SunSpiral, V., Bruce, J.: Design of superball v2, a compliant tensegrity robot for absorbing large impacts. In: IROS (2018)

    Google Scholar 

  18. Zhang, M., Geng, X., Bruce, J., Caluwaerts, K., Vespignani, M., SunSpiral, V., Abbeel, P., Levine, S.: Deep reinforcement learning for tensegrity robot locomotion. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 634–641 (2017). https://doi.org/10.1109/ICRA.2017.7989079

  19. Zhu, S., Kimmel, A., Bekris, K.E., Boularias, A.: Fast model identification via physics engines for data-efficient policy search. In: International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden (2018)

    Google Scholar 

Download references

Acknowledgment

Supported by NASA ECF grant NNX15AU47G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Surovik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surovik, D., Bruce, J., Wang, K., Vespignani, M., Bekris, K. (2020). Any-Axis Tensegrity Rolling via Symmetry-Reduced Reinforcement Learning. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_36

Download citation

Publish with us

Policies and ethics