Skip to main content

Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Essential Current Concepts in Stem Cell Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Reprogramming of somatic cells from various species into induced pluripotent stem (iPS) cells has been possible using ectopic expression of pluripotency-associated transcription factors like Oct4, Sox2 and Nanog. iPS cells can model genetic diseases when generated from patient-derived cells and emerge as a source for autologous and allogenic cell therapeutic applications when combined with genome editing e.g. CRISPR/Cas9 nuclease systems. In this chapter, you will be introduced to pluripotency and reprogramming, induction of pluripotent stem cells and their characterization, strategies to allow genome editing of iPS cells and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arias-Fuenzalida, J., Jarazo, J., Qing, X., Walter, J., Gomez-Giro, G., Nickels, S. L., Zaehres, H., Scholer, H. R., & Schwamborn, J. C. (2017). FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s disease modeling. Stem Cell Reports, 9, 1423–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., Takada, N., Inoue, M., Hasegawa, M., Kawamata, S., et al. (2011). Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 108, 14234–14239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum, C. (2007). Insertional mutagenesis in gene therapy and stem cell biology. Current Opinion in Hematology, 14, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z. D., Ziller, M., Croft, G. F., Amoroso, M. W., Oakley, D. H., et al. (2011). Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell, 144, 439–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., & Baldwin, K. K. (2009). Adult mice generated from induced pluripotent stem cells. Nature, 461, 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., & Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressan, R. B., Dewari, P. S., Kalantzaki, M., Gangoso, E., Matjusaitis, M., Garcia-Diaz, C., Blin, C., Grant, V., Bulstrode, H., Gogolok, S., et al. (2017). Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development, 144, 635–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., & Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655.

    Article  CAS  PubMed  Google Scholar 

  • Cherry, S. R., Biniszkiewicz, D., van Parijs, L., Baltimore, D., & Jaenisch, R. (2000). Retroviral expression in embryonic stem cells and hematopoietic stem cells. Molecular and Cellular Biology, 20, 7419–7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309, 1369–1373.

    Article  CAS  PubMed  Google Scholar 

  • Daley, G. Q., Lensch, M. W., Jaenisch, R., Meissner, A., Plath, K., & Yamanaka, S. (2009). Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell, 4, 200–201; author reply 202.

    Article  CAS  PubMed  Google Scholar 

  • Darr, H., Mayshar, Y., & Benvenisty, N. (2006). Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 133, 1193–1201.

    Article  CAS  PubMed  Google Scholar 

  • Do, J. T., & Scholer, H. R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells, 22, 941–949.

    Article  CAS  PubMed  Google Scholar 

  • Dorn, I., Klich, K., Arauzo-Bravo, M. J., Radstaak, M., Santourlidis, S., Ghanjati, F., Radke, T. F., Psathaki, O. E., Hargus, G., Kramer, J., et al. (2015). Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica, 100, 32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggenschwiler, R., Moslem, M., Fraguas, M. S., Galla, M., Papp, O., Naujock, M., Fonfara, I., Gensch, I., Wahner, A., Beh-Pajooh, A., et al. (2016). Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Scientific Reports, 6, 38198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich, M., Hallmann, A. L., Reinhardt, P., Arauzo-Bravo, M. J., Korr, S., Ropke, A., Psathaki, O. E., Ehling, P., Meuth, S. G., Oblak, A. L., et al. (2015). Distinct neurodegenerative changes in an induced pluripotent stem cell model of frontotemporal dementia linked to mutant TAU protein. Stem Cell Reports, 5, 83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85, 348–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodriguez-Piza, I., Vassena, R., Raya, A., Boue, S., Barrero, M. J., Corbella, B. A., et al. (2009). Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5, 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 10, 622–640.

    CAS  PubMed  Google Scholar 

  • Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 182, 64–65.

    Article  CAS  PubMed  Google Scholar 

  • Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., Zweigerdt, R., Gruh, I., Meyer, J., Wagner, S., et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5, 434–441.

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302, 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Hallmann, A. L., Arauzo-Bravo, M. J., Mavrommatis, L., Ehrlich, M., Ropke, A., Brockhaus, J., Missler, M., Sterneckert, J., Scholer, H. R., Kuhlmann, T., et al. (2017). Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Scientific Reports, 7, 42991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanna, J., Cheng, A. W., Saha, K., Kim, J., Lengner, C. J., Soldner, F., Cassady, J. P., Muffat, J., Carey, B. W., & Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 107, 9222–9227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargus, G., Ehrlich, M., Arauzo-Bravo, M. J., Hemmer, K., Hallmann, A. L., Reinhardt, P., Kim, K. P., Adachi, K., Santourlidis, S., Ghanjati, F., et al. (2014). Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain. Cell Reports, 8, 1697–1703.

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer, D., & Jaenisch, R. (2016). Induced pluripotent stem cells meet genome editing. Cell Stem Cell, 18, 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer, D., Soldner, F., Cook, E. G., Gao, Q., Mitalipova, M., & Jaenisch, R. (2008). A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 3, 346–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., Cost, G. J., Zhang, L., Santiago, Y., Miller, J. C., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29, 731–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., & Melton, D. A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26, 795–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hübner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J. F., 3rd, Boiani, M., & Schöler, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300, 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  • Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., et al. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N., & Reijo Pera, R. A. (2009). Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 462, 222–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J.B.∗, Zaehres, H.∗, Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., et al. (2009a). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. B., Greber, B., Arauzo-Bravo, M. J., Meyer, J., Park, K. I., Zaehres, H., & Scholer, H. R. (2009b). Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649–643.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. B., Sebastiano, V., Wu, G., Arauzo-Bravo, M. J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al. (2009c). Oct4-induced pluripotency in adult neural stem cells. Cell, 136, 411–419.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Huo, H., Loh, Y. H., Aryee, M. J., Lensch, M. W., et al. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29, 1117–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brustle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106, 3225–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laker, C., Meyer, J., Schopen, A., Friel, J., Heberlein, C., Ostertag, W., & Stocking, C. (1998). Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. Journal of Virology, 72, 339–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lensch, M. W., Schlaeger, T. M., Zon, L. I., & Daley, G. Q. (2007). Teratoma formation assays with human embryonic stem cells: A rationale for one type of human-animal chimera. Cell Stem Cell, 1, 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H. R., Hayek, A., & Ding, S. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27, 2992–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyssiotis, C. A., Foreman, R. K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L. L., Charette, B. D., Bouchez, L. C., et al. (2009). Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences of the United States of America, 106, 8912–8917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal, P. K., Ferreira, L. M., Collins, R., Meissner, T. B., Boutwell, C. L., Friesen, M., Vrbanac, V., Garrison, B. S., Stortchevoi, A., Bryder, D., et al. (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 15, 643–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., & Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011a). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008a). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt, P., Glatza, M., Hemmer, K., Tsytsyura, Y., Thiel, C. S., Hoing, S., Moritz, S., Parga, J. A., Wagner, L., Bruder, J. M., et al. (2013). Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One, 8, e59252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöler, H. R., Ruppert, S., Suzuki, N., Chowdhury, K., & Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature, 344, 435–439.

    Article  PubMed  Google Scholar 

  • Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Scholer, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterneckert, J. L., Reinhardt, P., & Scholer, H. R. (2014). Investigating human disease using stem cell models. Nature Reviews. Genetics, 15, 625–639.

    Article  CAS  PubMed  Google Scholar 

  • Sugawa, F., Arauzo-Bravo, M. J., Yoon, J., Kim, K. P., Aramaki, S., Wu, G., Stehling, M., Psathaki, O. E., Hubner, K., & Scholer, H. R. (2015). Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. The EMBO Journal, 34, 1009–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 11, 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007a). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., Jamieson, A. C., Porteus, M. H., Gregory, P. D., & Holmes, M. C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435, 646–651.

    Article  CAS  PubMed  Google Scholar 

  • Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B. E., & Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    Article  CAS  PubMed  Google Scholar 

  • Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hamalainen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Liu, N., Rittelmeyer, I., Sharma, A. D., Sgodda, M., Zaehres, H., Bleidissel, M., Greber, B., Gentile, L., Han, D. W., et al. (2011). Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biology, 9, e1001099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro, C., Sasaki, K., Yabuta, Y., Kojima, Y., Nakamura, T., Okamoto, I., Yokobayashi, S., Murase, Y., Ishikura, Y., Shirane, K., Sasaki, H., Yamamoto, T., & Saitou, M. (2018). Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 362, 356–360.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, H., Corbi, N., Basilico, C., & Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes & Development, 9, 2635–2645.

    Article  CAS  Google Scholar 

  • Zaehres, H., & Schöler, H. R. (2007). Induction of pluripotency: From mouse to human. Cell, 131, 834–835.

    Article  CAS  PubMed  Google Scholar 

  • Zaehres, H., Kogler, G., Arauzo-Bravo, M. J., Bleidissel, M., Santourlidis, S., Weinhold, S., Greber, B., Kim, J. B., Buchheiser, A., Liedtke, S., et al. (2010). Induction of pluripotency in human cord blood unrestricted somatic stem cells. Experimental Hematology, 38, 809–818, e801-802.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X. Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C. L., Ma, Q. W., Wang, L., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461, 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    Article  CAS  PubMed  Google Scholar 

  • Zwaka, T. P., & Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nature Biotechnology, 21, 319–321.

    Article  CAS  PubMed  Google Scholar 

Step-by Step Protocols

  • Kim, J. B., Zaehres, H., Araúzo-Bravo, M. J., & Schöler, H. R. (2009). Generation of induced pluripotent stem cells from neural stem cells. Nature Protocols, 4, 1464–1470.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Hong, H., Takahashi, K., & Yamanaka, S. (2010). Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 5, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., Shibata, T., Kunisada, T., Takahashi, M., Takahashi, J., Saji, H., & Yamanaka, S. (2011b). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Park, I. H., Lerou, P. H., Zhao, R., Huo, H., & Daley, G. Q. (2008b). Generation of human-induced pluripotent stem cells. Nature Protocols, 3, 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007b). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081–3089.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by financial contributions and grants from the German Ministry of Research and Education (BMBF), the German State of North Rhine Westphalia (NRW), the Max Planck Society (MPG) and Ruhr University Bochum (RUB), Medical Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Zaehres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaehres, H. (2020). Induced Pluripotent Stem Cells. In: Brand-Saberi, B. (eds) Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33923-4_7

Download citation

Publish with us

Policies and ethics