Skip to main content

High-Power Fiber Lasers

  • Chapter
  • First Online:
Fundamentals of Fiber Lasers and Fiber Amplifiers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 181))

Abstract

High-power fiber lasers occupy probably the most challenging and demanding place in the whole field of fiber laser technology; they also are state of the art. Both continuous-wave (CW) and pulsed high-power fiber laser systems constantly require technological advances. This chapter describes the main challenges in the development of high-power fiber lasers—the solution of which creates a path to successful laser development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.A. Parthasarathy, R.S. Hay, G.E. Fair, F.K. Hopkins, Predicted performance limits of yttrium aluminum garnet fiber lasers. Opt. Eng. 49(9), 094302 (2010)

    Article  ADS  Google Scholar 

  2. A. Wetter, M. Faucher, M. Lovelady, F. Seguin, Tapered fused-bundle splitter capable of 1 kW CW operation. Proc. SPIE 6453, 64530I.1–64530I.10 (2007)

    Google Scholar 

  3. J.P. Koplow, S.W. Moore, D.A.V. Kliner, A new method for side pumping of double-clad fiber sources. IEEE J. Quantum Electron. 39(4), 529–540 (2003)

    Article  ADS  Google Scholar 

  4. D.J. Ropin, L. Goldberg, High efficiency side-coupling of light into optical fibres using imbedded v-grooves. Electron. Lett. 31(25), 2204–2205 (1995)

    Article  Google Scholar 

  5. H. Weber, W. Luthy, H.P. Weber, V. Neuman, H. Berthou, G. Kotrotsios, A longitudinal and side-pumped single transverse mode double-clad fiber laser with a special silicone coating. Opt. Commun. 115, 99–104 (1995)

    Article  ADS  Google Scholar 

  6. J.M. Fini, Bend distortion in large-mode-area amplifier fiber design. Proc. SPIE 6781, 64530I (2007)

    Article  Google Scholar 

  7. B. Ya Zel’dovich, N.F. Pilipetsky, V.V. Shkunov, Principles of Phase Conjugation (Springer Series in Optical Sciences, Berlin, 1985), p. 250 (Hardcover)

    Google Scholar 

  8. G.W. Faris et al., High–resolution stimulated Brillouin gain spectroscopy in glasses and crystals. JOSA B 10(4), 587–599 (1993)

    Article  ADS  Google Scholar 

  9. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New York, 2001), p. 466

    Google Scholar 

  10. R.R. Alfano et al., Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials. J. Opt. Soc. Am. B. 6(4), 824–829 (1989)

    Article  ADS  Google Scholar 

  11. G.A. Askarian, Effect of the gradient of a strong electromagnetic ray on electrons and atoms. Zh. Eksp. Teor. Fiz. 42, 1361–1570 (1962)

    Google Scholar 

  12. G.M. Zverev, V.A. Pashkov, Self-focusing of laser radiation in solid dielectrics. Sov. Phys. JETP 30(4), 616–621 (1970)

    ADS  Google Scholar 

  13. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)

    Article  ADS  Google Scholar 

  14. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 93, 609–636 (1968)

    Article  ADS  Google Scholar 

  15. V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966)

    ADS  Google Scholar 

  16. A.A. Mak, L.N. Soms, V.A. Fromzel, V.E. Yashiin, Lasers Based on Neodymium Glass (Nauka, Moscow, 1990), pp. 1–288

    Google Scholar 

  17. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Phys. Uspekhi 10, 609–636 (1968)

    Article  ADS  Google Scholar 

  18. M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, H. Mueller, 10 W widely tunable narrow linewidth double-clad fiber ring laser. Opt. Express 10, 139–144 (2002)

    Article  ADS  Google Scholar 

  19. D.Y. Shen, J.K. Sahu, W.A. Clarkson, Highly efficient Er, Yb-doped fiber laser with 188 W free-running and >100 W tunable output power. Opt. Express 13, 4916–4921 (2005)

    Article  ADS  Google Scholar 

  20. Y. Jeong, J. Sahu, D. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004)

    Article  ADS  Google Scholar 

  21. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett. 28, 1537–1539 (2003)

    Article  ADS  Google Scholar 

  22. P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, D.J. Richardson, 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper PDP3

    Google Scholar 

  23. V. Khitrov, B. Samson, D. Machewirth, K. Tankala, 50 W single-mode linearly polarized high peak power pulsed fiber laser with tunable ns-μs pulse durations and kHz-MHz repetition. Proc. SPIE 6873, 68730C1–68730C6 (2008)

    Article  Google Scholar 

  24. F. Roser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, A. Tunnermann, 90 W average power high energy femtosecond fiber laser system. Proc. SPIE 6453, 645310.1–645310.4 (2007)

    Google Scholar 

  25. M. Dubinskii, V. Ter-Mikirtychev, J. Zhang, I. Kudryashov, Yb-free, SLM EDFA: Comparison of 980-, 1470- and 1530-nm excitation for the core-and clad-pumping. Proc. SPIE 6952, 695205 (2008)

    Article  Google Scholar 

  26. C. Zeringue, I. Dajani, C. Vergien, C. Robin, Pump limited 203 W monolithic single frequency fiber amplifier: A two-tone approach. Proc. SPIE 7914, 7914–7115 (2011)

    ADS  Google Scholar 

  27. G.D. Goodno, L.D. Book, J.E. Rothenberg, 600-W, single-mode, single-frequency thulium fiber laser amplifier. Proc. SPIE 7195, 71950Y-1-10 (2009)

    Google Scholar 

  28. T.Y. Fan, Laser beam combining for high-power, high radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005)

    Article  ADS  Google Scholar 

  29. I. Ciapurin, L. Glebov, E. Rotari, V. Smirnov, Spectral beam combining by PTR Bragg gratings, in Proceedings of Solid State and Diode Lasers Technical Review (SSDLTR), Los Angeles, CA, USA, pp. HPFib—4 (2003)

    Google Scholar 

  30. L.B. Glebov, V.I. Smirnov, M.C. Stickley, I.V. Ciapurin, Laser weapons technology III. Proc. SPIE 4724, 101–109 (2002)

    Article  ADS  Google Scholar 

  31. I.V. Ciapurin, L.B. Glebov, C.M. Stickley, In Proceedings of Solid State and Diode Lasers Technical Review (Albuquerque, Paper HPFIB4) (2002)

    Google Scholar 

  32. O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, L. Glebov, Fiber laser system with kW-level spectrally-combined output, in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest, Albuquerque, NM (June 2008), pp. 2–6

    Google Scholar 

  33. O. Andrusyak, I. Ciapurin, V. Smirnov, G.Venus, N. Vorobiev, L. Glebov, External and common-cavity high spectral density beam combining of high power fiber lasers, fiber lasers V: technology, systems, and applications, ed. by J. Broeng, C. Headley, Proceedings of SPIE, vol. 6873 (2008), p. 685314

    Google Scholar 

  34. A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, L. Glebov, Efficient power scaling of laser radiation by spectral beam combining. Opt. Lett. 33, 384–386 (2008)

    Article  ADS  Google Scholar 

  35. A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, L. Glebov, Efficient power scaling of laser radiation by spectral beam combining: Erratum. Opt. Lett. 33, 760 (2008)

    Article  ADS  Google Scholar 

  36. I.V. Ciapurin, L.B. Glebov, V.I. Smirnov, Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass. Proc. SPIE 5742, 183–194 (2005), See also Introduction to Volume Holographic Gratings (VHG), Ondax, white paper, www.ondax.com

  37. G. Venus, A. Sevian, V. Smirnov, L. Glebov, Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass. Opt. Lett. 31, 1453–1455 (2006)

    Article  ADS  Google Scholar 

  38. G. Venus, A. Sevian, L. Glebov, in Stable Coherent Coupling of Laser Diodes by a Volume Bragg Rating in PTR Glass. High-Power Diode Laser Technology and Applications IV, ed. by M. Zediker, Proceedings of SPIE, vol. 6104 (2006), p. 61040S

    Google Scholar 

  39. V.A. Kozlov, J. Hernández-Cordero, T.F. Morse, All-fiber coherent beam combining of fiber lasers. Opt. Lett. 24, 1814–1816 (1999)

    Article  ADS  Google Scholar 

  40. A. Shirakawa, K. Matsuo, K. Ueda, Fiber laser coherent array for power scaling, bandwidth narrowing and beam direction control, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper MC3, pp. 553–558

    Google Scholar 

  41. S.J. Augst, J.K. Ranka, T.Y. Fan, A. Sanchez, Beam combining of ytterbium fiber amplifiers. J. Opt. Soc. Am. B 24, 1707–1715 (2007)

    Article  ADS  Google Scholar 

  42. T. Shay, J. Baker, A. Sanchez, C. Robin, C. Vergien, C. Zeringue, D. Gallant, C. Lu, B. Pulford, T. Bronder, A. Lucero, in High-Power Phase Locking of a Fiber Amplifier Array, Fiber Lasers VI: Technology, Systems, and Applications, ed. by D.V. Gapontsev, D.A. Kliner, J.W. Dawson, K. Tankala, Proceedings of SPIE. 7195, p. 71951M

    Google Scholar 

  43. M. Fridman, V. Eckhouse, N. Davidson, A.A. Friesem, Simultaneous coherent and spectral addition of fiber lasers. Opt. Lett. 33, 648–650 (2008)

    Article  ADS  Google Scholar 

  44. K. Ludewigt, M. Gowin, E.T Have1, M. Jung, C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, High brightness spectral beam combining to 8.2 kW. Proc. SPIE 7914, 7914–7115 (2011)

    Google Scholar 

  45. D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, L. Glebov, High power spectral beam combining of fiber lasers with ultra high spectral density by thermal tuning of volume bragg gratings. Proc. SPIE 7914, 79141F1–79141F10 (2011)

    Article  Google Scholar 

  46. D. Kliner et al., Fiber technology reels in high power results. SPIE oemagazine, 32–35 (2004)

    Google Scholar 

  47. G.I. Stegeman, R.H. Stolen, Waveguides and fibers for nonlinear optics. J. Opt. Soc. Am. B 6, 652–662 (1989)

    Article  ADS  Google Scholar 

  48. N. Shibata, R.G. Waarts, R.P. Braun, Brillouin-gain spectra for single-mode fibers having pure-silica, GeO2-doped, and P2O5-doped cores. Opt. Lett. 12, 269–271 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ter-Mikirtychev, V.V. (2019). High-Power Fiber Lasers. In: Fundamentals of Fiber Lasers and Fiber Amplifiers. Springer Series in Optical Sciences, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-030-33890-9_10

Download citation

Publish with us

Policies and ethics