Skip to main content

Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis

  • Conference paper
  • First Online:
Book cover Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support (ML-CDS 2019, IMIMIC 2019)

Abstract

The ambiguity of the decision-making process has been pointed out as the main obstacle to practically applying the deep learning-based method in spite of its outstanding performance. Interpretability can guarantee the confidence of the deep learning system, therefore it is particularly important in the medical field. In this study, a novel deep network is proposed to explain the diagnostic decision with visual pointing map and diagnostic sentence justifying result simultaneously. To increase the accuracy of sentence generation, a visual word constraint model is devised in training justification generator. To verify the proposed method, comparative experiments were conducted on the problem of the diagnosis of breast masses. Experimental results demonstrated that the proposed deep network can explain diagnosis more accurately with various textual justifications.

This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-01779, A machine learning and statistical inference framework for explainable artificial intelligence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berment, H., Becette, V., Mohallem, M., Ferreira, F., Chérel, P.: Masses in mammography: what are the underlying anatomopathological lesions? Diagn. Intervent. Imag. 95(2), 124–133 (2014)

    Article  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.: The digital database for screening mammography. In: International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)

    Google Scholar 

  4. Huk Park, D., et al.: Multimodal explanations: justifying decisions and pointing to the evidence. In: CVPR, pp. 8779–8788. IEEE (2018)

    Google Scholar 

  5. Kim, S., Lee, J., Lee, H., Ro, Y.: Visually interpretable deep network for diagnosis of breast masses on mammograms. Phys. Med. & Biol. 63(23), 235025 (2018)

    Article  Google Scholar 

  6. Kim, S., Lee, J., Ro, Y.: Visual evidence for interpreting diagnostic decision of deep neural network in computer-aided diagnosis. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, p. 109500K. International Society for Optics and Photonics (2019)

    Google Scholar 

  7. Kim, Y.: Convolutional neural networks for sentence classification. In: Conference on Empirical Methods in Natural Language Processing, pp. 1746–1751 (2014)

    Google Scholar 

  8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. ICLR (2015)

    Google Scholar 

  9. Kooi, T., Litjens, G., Van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., den Heeten, A., Karssemeijer, N.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  10. Lee, K., Talati, N., Oudsema, R., Steinberger, S., Margolies, L.: Bi-rads 3: current and future use of probably benign. Current Radiol. Rep. 6(2), 5 (2018)

    Article  Google Scholar 

  11. Lin, C.: Rouge: a package for automatic evaluation of summaries. Text Summarization Branches Out (2004)

    Google Scholar 

  12. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  13. Liu, X., Li, H., Shao, J., Chen, D., Wang, X.: Show, tell and discriminate: image captioning by self-retrieval with partially labeled data. In: ECCV (2018)

    Google Scholar 

  14. Moon, W., Lo, C., Chang, J., Huang, C., Chen, J., Chang, R.: Quantitative ultrasound analysis for classification of bi-rads category 3 breast masses. J. Digital Imag. 26(6), 1091–1098 (2013)

    Article  Google Scholar 

  15. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: Annual Meeting of the Association for Computational Linguistics. pp. 311–318 (2002)

    Google Scholar 

  16. of Radiology, A.C.: Breast Imaging Reporting and Data System® (BI-RADS®). American College of Radiology, Reston, Va, 4 edn. (2003)

    Google Scholar 

  17. Selvi, R.: Breast Diseases Imaging and Clinical Management. Springer India, New Delhi (2015)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  19. Surendiran, B., Vadivel, A.: Mammogram mass classification using various geometric shape and margin features for early detection of breast cancer. Int. J. Med. Eng. Inform. 4(1), 36–54 (2012)

    Article  Google Scholar 

  20. Thomassin-Naggara, I., Tardivon, A., Chopier, J.: Standardized diagnosis and reporting of breast cancer. Diagn. Interv. Imag. 95(7–8), 759–766 (2014)

    Article  Google Scholar 

  21. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image description evaluation. In: CVPR, pp. 4566–4575. IEEE (2015)

    Google Scholar 

  22. Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. In: CVPR, pp. 9049–9058. IEEE (2018)

    Google Scholar 

  23. Wang, Y., Lin, Z., Shen, X., Cohen, S., Cottrell, G.: Skeleton key: image captioning by skeleton-attribute decomposition. In: CVPR, IEEE (2017)

    Google Scholar 

  24. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: Mdnet: a semantically and visually interpretable medical image diagnosis network. In: CVPR, pp. 6428–6436. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Man Ro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H., Kim, S.T., Ro, Y.M. (2019). Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis. In: Suzuki, K., et al. Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support. ML-CDS IMIMIC 2019 2019. Lecture Notes in Computer Science(), vol 11797. Springer, Cham. https://doi.org/10.1007/978-3-030-33850-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33850-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33849-7

  • Online ISBN: 978-3-030-33850-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics