Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 9505–9515. Curran Associates, Inc. (2018), http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140
CrossRef
Google Scholar
Bakker, R., Tiesinga, P., Kötter, R.: The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13(3), 353–366 (2015)
CrossRef
Google Scholar
Böhle, M., Eitel, F., Weygandt, M., Ritter, K.: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 194 (2019). https://doi.org/10.3389/fnagi.2019.00194. https://www.frontiersin.org/article/10.3389/fnagi.2019.00194
CrossRef
Google Scholar
Eitel, F., et al.: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. CoRR (2019). http://arxiv.org/abs/1904.08771
Esmaeilzadeh, S., Belivanis, D.I., Pohl, K.M., Adeli, E.: End-to-end Alzheimer’s disease diagnosis and biomarker identification. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 337–345. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_39
CrossRef
Google Scholar
Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838, April 2017. https://doi.org/10.1109/ISBI.2017.7950647
Liu, M., Cheng, D., Wang, K., Wang, Y.: The Alzheimer’s disease neuroimaging initiative: multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16(3), 295–308 (2018). https://doi.org/10.1007/s12021-018-9370-4
CrossRef
Google Scholar
Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognit. 65, 211–222 (2017). https://doi.org/10.1016/j.patcog.2016.11.008. http://www.sciencedirect.com/science/article/pii/S0031320316303582
CrossRef
Google Scholar
Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018). https://doi.org/10.1016/j.dsp.2017.10.011. http://www.sciencedirect.com/science/article/pii/S1051200417302385
MathSciNet
CrossRef
Google Scholar
Rieke, J., Eitel, F., Weygandt, M., Haynes, J.-D., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 24–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_3
CrossRef
Google Scholar
Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153. JMLR.org (2017)
Google Scholar
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR (Workshop Track) (2015). http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML 2017, pp. 3319–3328. JMLR.org (2017). http://dl.acm.org/citation.cfm?id=3305890.3306024
Vieira, S., Pinaya, W.H., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017). https://doi.org/10.1016/J.NEUBIOREV.2017.01.002. https://www.sciencedirect.com/science/article/pii/S0149763416305176
CrossRef
Google Scholar
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
CrossRef
Google Scholar