Skip to main content

Task-GAN: Improving Generative Adversarial Network for Image Reconstruction

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11905))

Abstract

Generative Adversarial Network (GAN) has demonstrated great potentials in computer vision tasks such as image restoration. However, image restoration for specific scenarios, such as medical image enhancement is still facing challenge: How to ensure the visually plausible results while not containing hallucinated features that might jeopardize downstream tasks such as pathology identification? Here, we propose Task-GAN, a generalized model for medical reconstruction problem. A task-specific network that captures the diagnostic/pathology features, was added to couple the GAN based image reconstruction framework. Validated on multiple medical datasets, we demonstrated that the proposed method leads to improved deep learning based image reconstruction while preserving the detailed structure and diagnostic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  2. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019)

    Article  Google Scholar 

  3. Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 232–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_27

    Chapter  Google Scholar 

  4. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2017)

    Article  MathSciNet  Google Scholar 

  5. Kang, E., et al.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)

    Article  Google Scholar 

  6. Chen, K., et al.: Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 290(3), 649–656 (2018)

    Article  Google Scholar 

  7. Huang, R., et al.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: ICCV (2017)

    Google Scholar 

  8. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  9. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: NIPS (2016)

    Google Scholar 

  10. Salimans, T., et al.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Zhu, J., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

  13. Warntjes, J.B.M., et al.: Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn. Reson. Med. 60, 320–329 (2008)

    Article  Google Scholar 

  14. Tanenbaum, L.N., et al.: Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. Am. J. Neuroradiol. 38, 1103–1110 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Zaharchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, J., Wang, G., Gong, E., Chen, K., Pauly, J., Zaharchuk, G. (2019). Task-GAN: Improving Generative Adversarial Network for Image Reconstruction. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics