Skip to main content

Abstract

The growing awareness of the key role of nutrition to human health status has greatly contributed to the spread of a new feeding concept: the functional nutrition. Nowadays, the foods are not exclusively a source of energy for the performance of normal metabolic processes of the body, but also the unique source of bioactive compounds. These compounds contribute to “maximize” the human health status and to “minimize” the risk of occurrence of diseases. The main challenge facing researchers and food industries is to ensure the quality attributes of foods and, simultaneously, to improve the food functionality. The present book chapter give an overview of the scientific studies conducted at the Food Science area of D3A (Department of Agricultural, Food and Environmental Sciences) with the aim to enhance the quality and the functionality of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giampieri F, Forbes-Hernandez TY, Gasparrini M et al (2017) The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Ann NY Acad Sci 1398:62–71

    Article  Google Scholar 

  2. Giampieri F, Tulipani S, Alvarez-Suarez JM et al (2012) The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28:9–10

    Article  Google Scholar 

  3. Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115

    Article  Google Scholar 

  4. Heertje I (2014) Structure and function of food products: a review. Food Struct 1:3–23

    Article  Google Scholar 

  5. Ruggieri S, Orsomando G, Sorci L et al (2015) Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. Biochim Biophys Acta 1854:1138–1149

    Article  Google Scholar 

  6. Kirkland JB, Mirella Meyer-Ficca L (2018) Niacin. Adv Food Nutr Res 83:83–149

    Article  Google Scholar 

  7. Ummarino S, Mozzon M, Zamporlini F et al (2017) Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay. Food Chem 221:161–162

    Article  Google Scholar 

  8. Giardinieri A, Pacetti D (2019) Water-soluble vitamins. In: Barba et al. (ed) Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds. Woodhead Publishing

    Google Scholar 

  9. Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130

    Article  Google Scholar 

  10. Mills KF, Yoshida S, Stein LR et al (2016) Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24:795–806

    Article  Google Scholar 

  11. Magni G, Amici A, Emanuelli M et al (2004) Enzymology of NAD homeostasis in man. Cell Mol Life Sci 61:19–34

    Article  Google Scholar 

  12. Mori V, Amici A, Mazzola F et al (2014) Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9(11):e113939

    Article  Google Scholar 

  13. Zamporlini F, Ruggieri S, Mazzola F et al (2014) Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD biosynthetic machinery in mammalian cells. FEBS J 281:5104–5119

    Article  Google Scholar 

  14. Pucci L, Perozzi S, Cimadamore F et al (2009) Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J 274:827–840

    Article  Google Scholar 

  15. Liu L, Su X, Quinn WJ 3rd et al (2018) Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab 27:1067–1080

    Article  Google Scholar 

  16. Fricker RA, Green EL, Jenkins SI et al (2018) The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res. https://doi.org/10.1177/1178646918776658

    Article  Google Scholar 

  17. Goldie C, Taylor AJ, Nguyen P et al (2016) Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomized controlled trials. Heart 102:198–203

    Article  Google Scholar 

  18. Haar CV, Peterson TC, Martens KM et al (2016) Vitamins and nutrients as primary treatments in experimental brain injury: clinical implications for nutraceutical therapies. Brain Res 1640:114–129

    Article  Google Scholar 

  19. Yoshino J, Baur JA, Imai SI (2018) NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27:513–528

    Article  Google Scholar 

  20. https://clinicaltrials.gov/ct2/results?cond=&term=nicotinamide+riboside&cntry=&state=&city=&dist

  21. Pellicciari R, Liscio P, Giacchè N et al (2018) α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD+) biosynthesis. J Med Chem 61:745–759

    Article  Google Scholar 

  22. Katsyuba E, Mottis A, Zietak M et al (2018) De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563:354–359

    Article  Google Scholar 

  23. Cantó C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

    Article  Google Scholar 

  24. Audrito V, Serra S, Brusa D et al (2015) Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 125:111–123

    Article  Google Scholar 

  25. Audrito V, Managò A, La Vecchia S et al (2018) Nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic target in BRAF-mutated metastatic melanoma. J Natl Cancer Inst 110

    Google Scholar 

  26. Grozio A, Sociali G, Sturla L et al (2013) CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 288:25938–25949

    Article  Google Scholar 

  27. Sociali G, Raffaghello L, Magnone M et al (2016) Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Oncotarget 7:2968–2984

    Article  Google Scholar 

  28. Thongon N, Zucal C, D’Agostino VG et al (2018) Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA. Cancer Metab 6. https://doi.org/10.1186/s40170-018-0174-7

  29. Geisel J (2003) Folic acid and neural tube defects in pregnancy: a review. J Perinat Neonatal Nurs 17(4):268–279

    Article  Google Scholar 

  30. Papakostas GI, Cassiello CF, Iovieno N (2012) Folates and S-adenosylmethionine for major depressive disorder. Can J Psychiatry 57(7)

    Google Scholar 

  31. Scott J, Weir D (1996) Homocysteine and cardiovascular disease. QJM 89(8):561–563

    Article  Google Scholar 

  32. Combs GF Jr (2012) The Vitamins, 4th edn. Academic Press, pp 1–570

    Google Scholar 

  33. Eitenmiller RR, Landen Jr W, Ye L (2007) Vitamin analysis for the health and food sciences. CRC press

    Google Scholar 

  34. Lucci P, Pacetti D, Loizzo M, Frega NG (2016) Canning: Impact on food products quality attributes. In: Jaiswal A (ed) Food processing technologies: impact on product attributes. CRC Presss USA

    Google Scholar 

  35. Tulipani S, Mezzetti B, Capocasa F et al (2008) Folate content in different strawberry genotypes and folate status in healthy subjects after strawberry consumption. J Agric Food Chem 13:56(3):696–704

    Google Scholar 

  36. Mezzetti B, Balducci F, Capocasa F et al (2016) Breeding strawberry for higher phytochemicals content and claim it: is it possible? Int J Fruit Sci 1–13

    Google Scholar 

  37. Storozhenko S, De Brouwer V, Volckaert M et al (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277–1279

    Google Scholar 

  38. Zhong CF, Mazzoni L, Balducci F et al (2017) Evaluation of Vitamin C content in fruit and leaves of different strawberry genotypes. Acta Hortic 1156(56):371–378

    Article  Google Scholar 

  39. Mazzoni L, Giampieri F, Diamanti J et al (2013) Il profilo nutrizionale nella fragola e il suo impatto sulla salute dell’uomo. Italus Hortus 20(10):1–14

    Google Scholar 

  40. Diamanti J, Balducci F, Di Vittori L et al (2016) Physico-chemical characteristics of thermally processed puree from different strawberry genotypes. J Food Comp Analys 43:106–118

    Article  Google Scholar 

  41. Mangaraj S, Goswami T, Mahajan P (2009) Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng Rev 1:133–158

    Article  Google Scholar 

  42. Cruz-Rus E, Amaya I, Sanchez-Sevilla JF et al (2011) Regulation of L-ascorbic acid content in strawberry fruits. J Exp Bot 1–11

    Google Scholar 

  43. Perez AG, Sanz C, Rios JJ et al (1999) Effects of ozone treatment on postharvest strawberry quality. J Agric Food Chem 47:1652–1656

    Article  Google Scholar 

  44. Balzano M, Pacetti D, Loizzo MR et al (2019) Nutritional Composition, health benefits and antioxidant properties of olive. In Jaiswal A (ed) Nutritional composition and antioxidant properties of fruits and vegetables. Academic Press

    Google Scholar 

  45. Lucci P, Pacetti D, Frega NG et al (2015) Changes in the chemical composition of oil from Elaeis oleifera × E. guineensis hybrids during fruit ripening. Eur J Lipid Sci Tech 117 (7):1027–1036

    Google Scholar 

  46. Rodríguez JC, Gómez D, Pacetti D et al (2016) Effects of the fruit ripening stage on antioxidant capacity, total phenolics, and polyphenolic composition of crude palm oil from interspecific hybrid Elaeis oleifera × Elaeis guineensis. J Agric Food Chem 64(4):852–859

    Article  Google Scholar 

  47. Diamanti J, Mazzoni L, Balducci F et al (2014) Use of wild genotypes in breeding program increases strawberry fruit sensorial and nutritional quality. J Agric Food Chem 62:3944–3953

    Article  Google Scholar 

  48. Giampieri F, Gasparrini M, Forbes-Hernandez TY et al (2018) Over expression of the anthocyanidin synthase gene in strawberry enhances antioxidant capacity and cytotoxic effects on human hepatic cancer cells. J Agric Food Chem 66:581–592

    Article  Google Scholar 

  49. Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  Google Scholar 

  50. Lo Piero AR, Puglisi I, Rapisarda P et al (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083–9088

    Article  Google Scholar 

  51. Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4977–4982

    Article  Google Scholar 

  52. Oh M-M, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    Article  Google Scholar 

  53. Awad MA, Wagenmakers PS, de Jager A (2001) Effects of light on flavonoids and chlorogenic acid levels in the skin of Jonagold apples. Sci Hort 88:289–298

    Article  Google Scholar 

  54. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  Google Scholar 

  55. Hohl U, Neubert B, Pforte H et al (2001) Flavonoid concentrations in the inner leaves of head lettuce genotypes. Eur Food Res Technol 213:205–211

    Article  Google Scholar 

  56. Wang SY, Zheng W, Galletta GJ (2002) Cultural system affects fruit quality and antioxidant capacity in strawberries. J Agric Food Chem 50:6534–6542

    Article  Google Scholar 

  57. Stewart AJ, Chapman W, Jenkins I et al (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissue. Plant, Cell Environ 24:1189–1197

    Article  Google Scholar 

  58. Bassim TAH, Pecket RC (1975) The effect of membrane stabilizers on phytochrome-controlled anthocyanin biosynthesis in Brassica oleraceae. Phytochemistry 14:731–733

    Article  Google Scholar 

  59. Shkolnik MY (1984) Trace elements. In: Shkolnik M (ed) Plants. Elsevier, Netherlands

    Google Scholar 

  60. Feucht W, Treutter D, Bengsch E et al (1999) Effects of water soluble boron and aluminium compounds on the synthesis of flavanols in grape vine callus. Z Naturforsch 54c:942–945

    Google Scholar 

  61. Servili M, Rizzello CG, Taticchi A et al (2011) Functional milk beverage fortified with phenolic compounds extracted from olive vegetation and fermented with functional lactic bacteria. Int J Food Microb 147:45–52

    Article  Google Scholar 

  62. Belščak-Cvitanović A, Komes D, Durgo K et al (2015) Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. J Food Sci Technol 52(12):7723–7734

    Google Scholar 

  63. Patras A, Brunton NP, Da Pieve S et al (2009) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innov Food Sci Emer Technol 10:303–313

    Google Scholar 

  64. Verardo V, Arráez-Román D, Segura-Carretero A et al (2011) Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: effect of thermal processing from farm to fork. J Agric Food Chem 59(14):7700–7707

    Article  Google Scholar 

  65. Boselli E, Di Lecce G, Alberti F et al (2010) Nitrogen gas affects the quality and the phenolic profile of must obtained from vacuum-pressed white grapes. LWT-Food Sci Technol 43(10):1494–1500

    Article  Google Scholar 

  66. Di Lecce G, Boselli E, D’Ignazi G et al (2013) Evolution of phenolics and glutathione in Verdicchio wine obtained with maceration under reductive conditions. LWT-Food Sci Technol 53(1):54–60

    Article  Google Scholar 

  67. Fiori F, Di Lecce G, Boselli E et al (2014) Effects of olive paste fast preheating on the quality of extra virgin olive oil during storage. LWT-Food Sci Technol 58:511–518

    Article  Google Scholar 

  68. Pacetti D, Mozzon M, Lucci P et al (2013) Bioactive fish fatty acids: health effects and their use as functional food ingredients Current Nutr. Food Sci 9(4):283–297

    Google Scholar 

  69. Boselli E, Pacetti D, Lucci P et al (2012) Characterization of phospholipid molecular species in the edible parts of bony fish and shellfish. J Agric Food Chem 60:3234–3245

    Article  Google Scholar 

  70. Pacetti D, Balzano M, Colella S et al (2013) Effect of spawning on furan fatty acid profile of edible muscle and organ tissues from sardine (sardina pilchardus) and anchovy (engraulis encrasicolus). J Agric Food Chem 61:3969–3977

    Google Scholar 

  71. Saini K, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance—a review. Life Sci 203:255–267

    Article  Google Scholar 

  72. Islam M, Castellucci C, Fiorini R et al (2018) Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells. J Cell Physiol 233:7143–7156

    Article  Google Scholar 

  73. Pacetti D, Malavolta M, Bocci F et al (2004) HPLC-ESI-MS-MS analysis and quantification of phosphatidylcholine molecular species in the serum of cystic fibrosis subjects supplemented with docosahexaenoic acid. Rapid Comm Mass Spectr 18:2395–2400

    Article  Google Scholar 

  74. Pacetti D, Lucci P, Mozzon M et al (2015) Influence of deep-fat frying process on phospholipid molecular species composition of sardina pilchardus fillet. Food Control 48:155–162

    Article  Google Scholar 

  75. Pacetti D, Alberti F, Boselli E et al (2010) Characterization of furan fatty acids in adriatic fish. Food Chem 122:209–215

    Article  Google Scholar 

  76. Pacetti D, Boselli E, Hulan HW et al (2005) High performance liquid chromatography-tandem mass spectrometry of phospholipid molecular species in eggs from hens fed diets enriched in seal blubber oil. J Chrom A 1097:66–73

    Article  Google Scholar 

  77. Pacetti D, Hulan HW, Schreiner M et al (2005) Positional analysis of egg triacylglycerols and phospholipids from hens fed diets enriched in refined seal blubber oil. J Sci Food Agric 85:1703–1714

    Article  Google Scholar 

  78. Frega NG, Mozzon M (2002) Acidi grassi di interesse nutrizionale (polinsaturi n-3, isomeri trans e isomeri coniugati dell’acido linoleico) nel latte di bovine alimentate con mangimi arricchiti di acidi grassi polinsaturi. Riv Ital Sost Grasse 79:193–199

    Google Scholar 

  79. Mozzon M, Frega NG, Fronte B et al (2002) Effect of dietary fish oil supplements on levels of n-3 polyunsaturated fatty acids, trans acids and conjugated linoleic acid in ewe milk. Food Technol Biotechnol 40:213–219

    Google Scholar 

  80. Jiménez-Colmenero F, Reig M, Toldrá F (2006) New approaches for the development of functional meat products. In: Nollet LML, Toldrá F (eds) Advanced technologies for meat processing. CRC Press

    Google Scholar 

  81. Branciari R, Balzano M, Pacetti D et al (2016) Dietary CLA supplementation of pigs confers higher oxidative stability to Ciauscolo and Fabriano salami produced from their meat with no negative impact on the physico-chemical, microbiological and sensorial characteristics. Eur J Lipid Sci Technol 118:1475–1485

    Google Scholar 

  82. Forte C, Branciari R, Pacetti D et al (2018) Dietary oregano (Origanum vulgare L.) aqueous extract improves oxidative stability and consumer acceptance of meat enriched with CLA and n-3 PUFA in broilers. Poultry Sci 97:1774–1785

    Google Scholar 

  83. Mattioli S, Cardinali R, Balzano M et al (2017) Influence of dietary supplementation with prebiotic, oregano extract and vitamin E on fatty acid profile and oxidative status of rabbit meat. J Food Qual 3015120

    Google Scholar 

  84. Carloni P, Tiano L, Padella L et al (2013) Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Res Int 53:900–908

    Google Scholar 

  85. Castiglioni S, Damiani E, Astolfi P et al (2015) Influence of steeping conditions (time, temperature and particle size) on antioxidant properties and sensory attributes of some white and green teas. Int J Food Sci Nutr 66:491–497

    Article  Google Scholar 

  86. Damiani E, Bacchetti T, Padella L et al (2014) Antioxidant activity of different white teas: comparison of hot and cold tea infusions. J Food Comp Anal 33:59–66

    Article  Google Scholar 

  87. Venditti E, Bacchetti T, Tiano L et al (2010) Hot vs. cold water steeping of different teas: do they affect antioxidant activity? Food Chem 119:1597–1604

    Article  Google Scholar 

  88. Castiglioni S, Stefano M, Astolfi P et al (2017) Chemometric approach to the analysis of antioxidant properties and colour of typical Italian monofloral honeys. Int J Food Sci Technol 52:1138–1146

    Article  Google Scholar 

  89. Castiglioni S, Stefano M, Pisani M et al (2018) Geographical characterisation of multifloral honeys from the Marche region (Italy) according to their antioxidant activity and colour using a chemometric approach. Int J Food Sci Technol 53:571–581

    Article  Google Scholar 

  90. Rocchetti G, Castiglioni S, Maldarizzi G et al (2019) UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int J Food Sci Technol 54:335–346

    Google Scholar 

  91. Lucci P, Borrero M, Ruiz A et al (2016) Palm oil and cardiovascular disease: A randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns. Food Funct 7:347–354

    Article  Google Scholar 

  92. Ojeda M, Borrero M, Sequeda G et al (2016) Hybrid palm oil (Elaeis oleifera × Elaeis guineensis) supplementation improves plasma antioxidant capacity in humans. Eur J Lipid Sci Technol 119:1600070

    Article  Google Scholar 

  93. Falcone PM, Giudici P (2008) Molecular size and molecular size distribution affecting traditional balsamic vinegar ageing, J Agric Food Chem 56(16):7057–7066

    Google Scholar 

  94. Falcone PM, Boselli E, Frega NG (2011) Structure-composition relationships of the traditional balsamic vinegar close to jamming transition. Food Res Intern 44(6):1613–1619

    Article  Google Scholar 

  95. Falcone PM (2010) Crystallization and jamming in the traditional balsamic vinegar. Food Res Inter 43(8):2217–2220

    Article  Google Scholar 

  96. Falcone PM, Mozzon M, Frega NG (2012) Structure-composition relationships of the traditional balsamic vinegar of modena close to jamming transition (Part II): threshold control parameters. Food Res Inter 45(1):75–84

    Article  Google Scholar 

  97. Falcone PM, Sabatinelli E, Valentini L et al (2018) A study on the mechanical relaxation under heating of parmigiano reggiano cheese. In: Proceedings 12th annual European rheology conference (Italy)

    Google Scholar 

  98. Falcone PM, Pacetti D, Bianchi A, Nocetti M, Frega NG (2018d) Towards standardization of the quality of parmigiano reggiano cheese: engineering coding for non-invasive and destructive mechanical measurement. In: Proceedings 11th metro agriculture for inter conference (Italy)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Pacetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pacetti, D. et al. (2020). Food Quality and Functionality. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics