Skip to main content

Marine Biology. Biodiversity and Functioning of Marine Ecosystems: Scientific Advancements and New Perspectives for Preserving Marine Life

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

The ocean is a complex three-dimensional world covering approximately 71% of the Earth’s surface offering a huge potential of new discoveries in all the fields of science. The hope is that these discoveries, if adequately supported and implemented, could lead to the finding of sustainable solutions inspiring new technologies and growth strategies. The continuous discovery of new species and their interactions, the increasing understanding of the complex connection between biodiversity and ecosystems functioning, and the dramatic relation between the loss of biodiversity and the spreading of non-indigenous species are clearly stating the importance to strengthen the effort on marine biology studies. The growing interest of young generations on these topics is ultimately confirming this urgent need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. May RM (1990) Taxonomy as destiny. Nature 347:129–130

    Article  Google Scholar 

  2. Boero F (2010) The study of species in the era of biodiversity: a tale of stupidity. Diversity 2:115–126

    Article  Google Scholar 

  3. Di Camillo CG, Gravili C, De Vito D et al (2018) The importance of applying standardized integrative taxonomy when describing marine benthic organisms and collecting ecological data. Invertebr Syst 32:794–802

    Article  Google Scholar 

  4. Bouligand Y (2004) The renewal of ideas about biomineralization. CR Palevol 3:617–628

    Article  Google Scholar 

  5. Cerrano C, Arillo A, Bavestrello G et al (1999) Organism–quartz interactions in structuring benthic communities: towards a marine bio-mineralogy? Ecol Lett 2:1–3

    Article  Google Scholar 

  6. Giovine M, Scarfì S, Pozzolini M et al (2013) Cell reactivity to different silica. In: Müller WEG, Wang X, Schröder HC (eds) Biomedical inorganic polymers. Springer, Berlin

    Google Scholar 

  7. Valisano L, Bavestrello G, Giovine M et al (2007) Effect of iron and dissolved silica on primmorphs of Petrosia ficiformis (Poiret, 1789). Chem Ecol 23:233–241

    Article  Google Scholar 

  8. Lauritano C, Lanora A (2018) Grand challenges in marine biotechnology: overview of recent EU-funded projects. In: Rampelotto PH, Trincone A (eds) Grand challenges in marine biotechnology. Springer, Cham

    Google Scholar 

  9. Fattorusso E, Taglialatela-Scafati O, Petrucci F et al (2004) Polychlorinated androstanes from the burrowing sponge Cliona nigricans. Org Lett 6:1633–1635

    Article  Google Scholar 

  10. Pozzolini M, Sturla L, Cerrano C et al (2004) Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol 6:594–603

    Article  Google Scholar 

  11. Piraino S, Boero F, Aeschbach B et al (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190:302–312

    Article  Google Scholar 

  12. Calcinai B, Cerrano C, Totti C et al (2006) Symbiosis of Mycale (Mycale) vansoesti sp. nov. (Porifera, Demospongiae) with a coralline alga from North Sulawesi (Indonesia). Invertebr Biol 125:195–204

    Article  Google Scholar 

  13. Calcinai B, Bavestrello G, Bertolino M et al (2013) Sponges associated with octocorals in the Indo-Pacific, with the description of four new species. Zootaxa 3617:001–061

    Article  Google Scholar 

  14. Di Camillo CG, Cerrano C, Romagnoli T et al (2017) Living inside a sponge skeleton: the association of a sponge, a macroalga and a diatom. Symbiosis 71:185–198

    Article  Google Scholar 

  15. Puce S, Calcinai B, Bavestrello G et al (2005) Hydrozoa (Cnidaria) symbiotic with Porifera: a review. Mar Ecol 26:73–81

    Article  Google Scholar 

  16. Cerrano C, Danovaro R, Gambi C et al (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19:153–167

    Article  Google Scholar 

  17. Poliseno A, Altuna A, Cerrano C et al (2017) Historical biogeography and mitogenomics of two endemic Mediterranean gorgonians (Holaxonia, Plexauridae). Org Divers Evol 17:365–373

    Article  Google Scholar 

  18. Coll M, Piroddi C, Albouy C et al (2011) The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob Ecol Biogeogr 20:1–16

    Article  Google Scholar 

  19. Canapa A, Marota I, Rollo F et al (1996) Phylogenetic analysis of Veneridae (Bivalvia): comparison of molecular and palaeontological data. J Mol Evol 43:517–522

    Article  Google Scholar 

  20. Canapa A, Marota I, Rollo F et al (1999) The small-subunit rRNA gene sequences of venerids and the phylogeny of bivalvia. J Mol Evol 48:463–468

    Article  Google Scholar 

  21. Canapa A, Barucca M, Marinelli A et al (2000) Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia). J Mol Evol 50:93–97

    Article  Google Scholar 

  22. Canapa A, Barucca M, Marinelli A et al (2001) A molecular phylogeny of Heterodonta (Bivalvia) based on small ribosomal subunit RNA sequences. Mol Phylogenet Evol 21:156–161

    Article  Google Scholar 

  23. Canapa A, Schiaparelli S, Marota I et al (2003) Molecular data from the 16S rRNA gene for the phylogeny of Veneridae (Mollusca: Bivalvia). Mar Biol 142:1125–1130

    Article  Google Scholar 

  24. Barucca M, Olmo E, Schiaparelli S et al (2004) Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes. Mol Phylogenet Evol 31:89–95

    Article  Google Scholar 

  25. Schiaparelli S, Barucca M, Olmo E et al (2005) Phylogenetic relationships within Ovulidae (Gastropoda: Cypraeoidea) based on molecular data from the 16S rRNA gene. Mar Biol 147:411–420

    Article  Google Scholar 

  26. Waller TR (2006) Phylogeny of families in the Pectinoidea (Mollusca: Bivalvia): importance of the fossil record. Zool J Linn Soc 148:313–342

    Google Scholar 

  27. Giribet G, Wheeler W (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebr Biol 121:271–324

    Article  Google Scholar 

  28. Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164

    Article  Google Scholar 

  29. Bouchet P, Rocroi J-P, Hausdorf B et al (2017) Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61:1–526

    Article  Google Scholar 

  30. Barucca M, Azzini F, Bavestrello G et al (2007) The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis. Mar Biol 151:529–535

    Article  Google Scholar 

  31. Lapian HFN, Barucca M, Bavestrello G et al (2007) A systematic study of black corals species (Antipatharia, Hexacorallia) based on rDNA internal transcribed spacers sequences. Mar Biol 151:785–792

    Article  Google Scholar 

  32. Bo M, Barucca M, Biscotti MA et al (2009) Description of Pseudocirrhipathes (Cnidaria: Anthozoa: Hexacorallia: Antipathidae), a new genus of whip black corals from the Indo-Pacific. Ital J Zool 76:392–402

    Article  Google Scholar 

  33. Bo M, Bavestrello G, Barucca M et al (2012) Morphological and molecular characterization of the problematic whip black coral genus Stichopathes (Hexacorallia: Antiphataria) from Indonesia (North Sulawesi, Celebes Sea). Zool J Linn Soc Lond 166:1–13

    Google Scholar 

  34. Bo M, Barucca M, Biscotti MA et al (2018) Phylogenetic relationships of Mediterranean black corals (Cnidaria: Anthozoa: Hexacorallia) and implications for classification within the order Antipatharia. Invertebr Syst 32:1102–1110

    Article  Google Scholar 

  35. Amemiya CT, Alföldi J, Lee AP et al (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature 12027:311–316

    Article  Google Scholar 

  36. Pallavicini A, Canapa A, Barucca M et al (2013) Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genom 14:53

    Article  Google Scholar 

  37. Biscotti MA, Gerdol M, Canapa A et al (2016) The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci Rep 6:21571

    Article  Google Scholar 

  38. Forconi M, Biscotti MA, Barucca M et al (2014) Characterization of purine catabolic pathway genes in coelacanths. JEZB (Mol Dev Evol) 322B:334–341

    Article  Google Scholar 

  39. Biscotti MA, Adolfi MC, Barucca M et al (2018) A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths. Genome Biol Evol 10:1430–1444

    Article  Google Scholar 

  40. Biscotti MA, Barucca M, Carducci F et al (2018) New perspectives on the evolutionary history of vitellogenin gene family in vertebrates. Genome Biol Evol 10:2709–2715

    Article  Google Scholar 

  41. Berdalet E, Tester PA, Chinain M et al (2017) Harmful algal blooms in benthic systems: recent progress and future research. Oceanography 30(1):36–45

    Article  Google Scholar 

  42. Accoroni S, Tartaglione L, Iacovo E et al (2017) Influence of environmental factors on the toxin production of Ostreopsis cf. ovata during bloom events. Mar Pollut Bull 123:261–268

    Article  Google Scholar 

  43. Accoroni S, Ceci M, Tartaglione L et al (2018) Role of temperature and nutrients on the growth and toxin production of Prorocentrum hoffmannianum (Dinophyceae) from the Florida Keys. Harmful Algae 80:140–148

    Article  Google Scholar 

  44. Mattei C, Vetter I, Eisenblätter A (2014) Ciguatera fish poisoning: a first epidemic in Germany highlights an increasing risk for European countries. Toxicon 91:76–83

    Article  Google Scholar 

  45. Wells ML, Trainer VL, Smayda TJ (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  Google Scholar 

  46. Kibler SR, Tester PA, Kunkel KE et al (2015) Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean. Ecol Modell 316:194–210

    Article  Google Scholar 

  47. Aligizaki K, Nikolaidis G (2008) Morphological identification of two tropical dinoflagellates of the genera Gambierdiscus and Sinophysis in the Mediterranean Sea. J Biol Res 9:75–82

    Google Scholar 

  48. Laza-Martínez A, David H, Riobó P (2016) Characterization of a strain of Fukuyoa paulensis (Dinophyceae) from the Western Mediterranean Sea. J Eukaryot Microbiol 63(4):481–497

    Article  Google Scholar 

  49. Bentur Y, Spanier E (2007) Ciguatoxin-like substances in edible fish on the Eastern Mediterranean. Clin Toxicol 45(6):695–700

    Article  Google Scholar 

  50. Accoroni S, Totti C (2016) The toxic benthic dinoflagellates of the genus Ostreopsis in temperate areas: a review. Adv Oceanogr Limnol 7(1):1–15

    Google Scholar 

  51. Penna A, Fraga S, Battocchi C et al (2010) A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt. J Biogeogr 37(5):830–841

    Article  Google Scholar 

  52. Penna A, Fraga S, Battocchi C et al (2012) Genetic diversity of the genus Ostreopsis Schmidt phylogeographical considerations and molecular methodology applications for field detection in the Mediterranean Sea. Cryptogam Algol 33(2):153–163

    Article  Google Scholar 

  53. Accoroni S, Romagnoli T, Penna A et al (2016) Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the Eastern Mediterranean Sea. J Phycol 52(6):1064–1084

    Google Scholar 

  54. Perini F, Casabianca A, Battocchi C et al (2011) New approach using the real-time PCR method for estimation of the toxic marine dinoflagellate Ostreopsis cf. ovata in marine environment. PLoS One 6(3):e17699

    Google Scholar 

  55. Corriero G, Pierri C, Accoroni S et al (2016) Ecosystem vulnerability to alien and invasive species: a case study on marine habitats along the Italian coast. Aquat Conserv Mar Freshw Ecosys 26:392–409

    Article  Google Scholar 

  56. Totti C, Accoroni S, Cerino F et al (2010) Ostreopsis ovata bloom along the Conero Riviera (Northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9(2):233–239

    Article  Google Scholar 

  57. Vassalli M, Penna A, Sbrana F et al (2018) Intercalibration of counting methods for Ostreopsis spp. blooms in the Mediterranean Sea. Ecol Indic 85:1092–1100

    Article  Google Scholar 

  58. Jauzein C, Açaf L, Accoroni S et al (2018) Optimization of sampling, cell collection and counting for the monitoring of benthic harmful algal blooms: application to Ostreopsis spp. blooms in the Mediterranean Sea. Ecol Indic 91:116–127

    Article  Google Scholar 

  59. García-Altares M, Tartaglione L, Dell’Aversano C et al (2015) The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MSn. Anal Bioanal Chem 407(4):1191–1204

    Google Scholar 

  60. Brissard C, Hervé F, Sibat M et al (2015) Characterization of ovatoxin-h, a new ovatoxin analog, and evaluation of chromatographic columns for ovatoxin analysis and purification. J Chromatogr A 1388:87–101

    Article  Google Scholar 

  61. Ciminiello P, Dell’Aversano C, Dello Iacovo E et al (2012) Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MSn characterization of ovatoxin-f, a new palytoxin congener. Chem Res Toxicol 25(6):1243–1252

    Google Scholar 

  62. Gorbi S, Bocchetti R, Binelli A et al (2012) Biological effects of palytoxin-like compounds from Ostreopsis cf. ovata: a multibiomarkers approach with mussels Mytilus galloprovincialis. Chemosphere 89(5):623–632

    Google Scholar 

  63. Vila M, Abós-Herràndiz R, Isern-Fontanet J et al (2016) Establishing the link between Ostreopsis cf. ovata blooms and human health impacts using ecology and epidemiology. Sci Mar 80(S1):107–115

    Google Scholar 

  64. Gorbi S, Avio GC, Benedetti M et al (2013) Effects of harmful dinoflagellate Ostreopsis cf. ovata exposure on immunological, histological and oxidative responses of mussels Mytilus galloprovincialis. Fish Shellfish Immunol 35(3):941–950

    Google Scholar 

  65. Tichadou L, Glaizal M, Armengaud A et al (2010) Health impact of unicellular algae of the Ostreopsis genus blooms in the Mediterranean Sea: experience of the French Mediterranean coast surveillance network from 2006 to 2009. Clin Toxicol 48(8):839–844

    Article  Google Scholar 

  66. Migliaccio O, Castellano I, Di Cioccio D et al (2016) Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms. Sci Rep 6:26086

    Article  Google Scholar 

  67. Mangialajo L, Ganzin N, Accoroni S et al (2011) Trends in Ostreopsis proliferation along the Northern Mediterranean coasts. Toxicon 57(3):408–420

    Google Scholar 

  68. Accoroni S, Colombo F, Pichierri S et al (2012) Ecology of Ostreopsis cf. ovata blooms in the Northwestern Adriatic Sea. Cryptogam Algol 33(2):191–198

    Google Scholar 

  69. Accoroni S, Percopo I, Cerino F et al (2015) Allelopathic interactions between the HAB dinoflagellate Ostreopsis cf. ovata and macroalgae. Harmful Algae 49:147–155

    Article  Google Scholar 

  70. Accoroni S, Romagnoli T, Pichierri S et al (2016) Effects of the bloom of harmful benthic dinoflagellate Ostreopsis cf. ovata on the microphytobenthos community in the Northern Adriatic Sea. Harmful Algae 55:179–190

    Article  Google Scholar 

  71. Pichierri S, Accoroni S, Pezzolesi L et al (2017) Allelopathic effects of diatom filtrates on the toxic benthic dinoflagellate Ostreopsis cf. ovata. Mar Environ Res 131:116–122

    Article  Google Scholar 

  72. Accoroni S, Romagnoli T, Pichierri S et al (2014) New insights on the life cycle stages of the toxic benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 34:7–16

    Article  Google Scholar 

  73. Accoroni S, Glibert PM, Pichierri S et al (2015) A conceptual model of annual Ostreopsis cf. ovata blooms in the Northern Adriatic Sea based on the synergic effects of hydrodynamics, temperature, and the N: P ratio of water column nutrients. Harmful Algae 45:14–25

    Article  Google Scholar 

  74. Accoroni S, Totti C, Razza E et al (2017) Phosphatase activities of a microepiphytic community during a bloom of Ostreopsis cf. ovata in the northern Adriatic Sea. Water Res 120:272–279

    Article  Google Scholar 

  75. Danovaro R, Snelgrove PV, Tyler P (2014) Challenging the paradigms of deep-sea ecology. Trends Ecol Evol 29(8):465–475

    Article  Google Scholar 

  76. Danovaro R, Dell’Anno A, Corinaldesi C et al (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454(7208):1084

    Google Scholar 

  77. Danovaro R, Corinaldesi C, Rastelli E et al (2015) Towards a better quantitative assessment of the relevance of deep-sea viruses, bacteria and archaea in the functioning of the ocean seafloor. Aquat Microb Ecol 75(1):81–90

    Article  Google Scholar 

  78. Danovaro R, Molari M, Corinaldesi C et al (2016) Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Sci Adv 2(4):e1500961

    Article  Google Scholar 

  79. Corinaldesi C (2015) New perspectives in benthic deep-sea microbial ecology. Front Mar Sci 2:17

    Article  Google Scholar 

  80. Danovaro R, Dell’Anno A, Pusceddu A et al (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    Article  Google Scholar 

  81. Danovaro R, Gambi C, Dell’Anno A et al (2016) The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biol 14:43

    Article  Google Scholar 

  82. Corinaldesi C, Dell’Anno A, Danovaro R (2012) Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME J6(6):1250

    Article  Google Scholar 

  83. Corinaldesi C, Tangherlini M, Luna GM et al (2014) Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proc R Soc Lond B Biol Sci 281(1780):20133299

    Article  Google Scholar 

  84. Dell’Anno A, Corinaldesi C, Danovaro R (2015) Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci U S A 112(16):E2014–E2019

    Article  Google Scholar 

  85. Danovaro R, Canals M, Tangherlini M et al (2017) A submarine volcanic eruption leads to a novel microbial habitat. Nat Ecol Evol 1(6):0144

    Article  Google Scholar 

  86. Danovaro R, Bianchelli S, Gambi C et al (2009) α-, β-, γ-, δ and ε-diversity of deep-sea nematodes in canyons and open slopes of E-Atlantic and Mediterranean margins. Mar Ecol Progr Ser 396:197–209

    Article  Google Scholar 

  87. Bianchelli S, Gambi C, Zeppilli D et al (2010) Metazoan meiofauna in deep-sea canyons and adjacent open slopes: a large-scale comparison with focus on the rare taxa. Deep-Sea Res I 57:420–433

    Article  Google Scholar 

  88. Gambi C, Pusceddu A, Benedetti-Cecchi L et al (2014) Species richness, species turnover, and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Global Ecol Biogeogr 23:24–39

    Article  Google Scholar 

  89. Gambi C, Danovaro R (2016) Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep-Sea Res I 108:13–22

    Article  Google Scholar 

  90. Danovaro R, Gambi C, Dell’Anno A et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18(1):1–8

    Article  Google Scholar 

  91. Levin N, Kark S, Danovaro R (2018) Adding the third dimension to marine conservation. Conserv Lett 11:e12408

    Article  Google Scholar 

  92. Pusceddu A, Bianchelli S, Martín J et al (2014) Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc Natl Acad Sci U S A 111:8861–8866

    Article  Google Scholar 

  93. Fanelli E, Delbono I, Cocito S et al (2017) Cold water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): historical banks and recent findings. Aquat Conserv Mar Freshw Ecosys 27(5):965–975

    Article  Google Scholar 

  94. Yasuhara M, Danovaro R (2016) Temperature impacts on deep-sea biodiversity. Biol Rev 91(2):275–287

    Article  Google Scholar 

  95. Gambi C, Corinaldesi C, Dell’Anno A et al (2017) Functional response to food limitation can reduce the impact of global change in the deep-sea benthos. Global Ecol Biogeogr 26(9):1008–1021

    Article  Google Scholar 

  96. Fanelli E, Cartes JE, Papiol V et al (2016) Long-term decline in the trophic level of megafauna in the deep Mediterranean Sea: a stable isotopes approach. Clim Res 67:191–207

    Article  Google Scholar 

  97. Danovaro R, Corinaldesi C, Dell’Anno A et al (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35(6):993–1034

    Article  Google Scholar 

  98. Danovaro R, Corinaldesi C, Dell’Anno A et al (2017) The deep-sea under global change. Curr Biol 27(11):R461–R465

    Article  Google Scholar 

  99. Danovaro R, Aguzzi J, Fanelli E et al (2017) An international new ecosystem- based monitoring and assessment strategy for the global deep ocean. Science 355(6324):452–454

    Article  Google Scholar 

  100. ICES (2017) Report of the ICES/NAFO joint working group on deep-water ecology (WGDEC), 20–24 Mar 2017, Copenhagen, Denmark. ICES CM 2017/ACOM:25

    Google Scholar 

  101. Fanelli E, Bianchelli S, Danovaro R (2018) Deep-sea mobile megafauna of Mediterranean submarine canyons and open slopes: analysis of spatial and bathymetric gradients. Progr Oceanogr 168:23–34

    Article  Google Scholar 

  102. Bianchelli S, Danovaro R (2019) Meiofaunal biodiversity in submarine canyons of the Mediterranean Sea: a meta-analysis. Progr Oceanogr 170:69–80

    Article  Google Scholar 

  103. Fanelli E, Papiol V, Cartes JE et al (2013) Trophic webs of deep-sea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis. Mar Ecol Progr Ser 490:199–221

    Article  Google Scholar 

  104. Fanelli E, Cartes JE, Papiol V (2011) Trophodynamics of zooplankton fauna on the Catalan slope (NW Mediterranean): insight from δ13C and δ15N analysis. J Mar Syst 87:79–89

    Article  Google Scholar 

  105. Fanelli E, Cartes JE, Papiol V et al (2014) Trophic ecology of the lanternfish Lampanyctus crocodilus in NW Mediterranean in relation to reproductive cycle and environmental variables. J Fish Biol 84:1654–1688

    Article  Google Scholar 

  106. Van Dover CL, Aronson J, Pendleton L et al (2014) Ecological restoration in the deep sea: desiderata. Mar Policy 44:98–106

    Article  Google Scholar 

  107. Lucrezi S, Milanese M, Palma M et al (2018) Stirring the strategic direction of scuba diving marine citizen science: a survey of active and potential participants. PLoS ONE 13(8):e0202484

    Article  Google Scholar 

  108. Cerrano C, Milanese M, Ponti M (2017) Diving for science—science for diving: volunteer scuba divers support science and conservation in the Mediterranean Sea. Aquat Conserv Mar Freshw Ecosys 27:303–323

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ettore Olmo who founded the Faculty of Sciences in 1991, today Department of Life and Environmental Sciences, and led it as Dean for twenty years, encouraging and stimulating its development and research activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cecilia Maria Totti or Carlo Cerrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Totti, C. et al. (2020). Marine Biology. Biodiversity and Functioning of Marine Ecosystems: Scientific Advancements and New Perspectives for Preserving Marine Life. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics