Skip to main content

Diagnostics: The Role of the Laboratory

  • Chapter
  • First Online:
Highly Infectious Diseases in Critical Care

Abstract

The significant role of the laboratory in infectious disease diagnosis calls for a closed loop working relationship between the physician and laboratory technician. The laboratory aims to generate useful information for the diagnosis, prognostication, and therapeutic monitoring of many human conditions. The laboratory and physician’s combined role holds an immense value for the healthcare system as a whole, especially in the critical care unit. This chapter focuses on the role the laboratory plays in critical care medicine. It will help allow physicians to focus on tests that are valuable and understand tests that add little or no value for diagnostic decisions. This chapter will focus on an organism-based approach as opposed to a system-based approach and includes laboratory testing for viral, bacterial, fungal, and parasitic infections. Each section will contain introductory concepts, a summary of key points, the most reliable tests to order, samples to collect in order of preference, specimen transport devices, procedures, temperatures, and detailed notes on specific issues regarding test methods. This chapter is designed to serve as a tool for physicians in choosing tests that will aid them in accurately and effectively diagnosing infectious diseases in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia RA, Spitzer ED, Beaudry J, et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-associated bloodstream infections. Am J Infect Control. 2015;43:1222–37.

    Article  PubMed  Google Scholar 

  2. Fenner L, Widmer AF, Straub C, Frei R. Is the incidence of anaerobic bacteremia decreasing? Analysis of 114,000 blood cultures over a ten-year period. J Clin Microbiol. 2008;46:2432–4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee CC, Lin WJ, Shih HI, et al. Clinical significance of potential contaminants in blood cultures among patients in a medical center. J Microbiol Immunol Infect. 2007;40:438–44.

    PubMed  Google Scholar 

  4. McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:987–94.

    Article  CAS  PubMed  Google Scholar 

  5. Calderia D, David C, Sampaio C. Skin antiseptics in venous puncture-site disinfection for prevention of blood culture contamination: systematic review with meta-analysis. J Hosp Infect. 2011;77:223–32.

    Article  Google Scholar 

  6. Malani A, Trimble K, Parekh V, et al. Review of clinical trials of skin antiseptic agents used to reduce blood culture contamination. Infect Control Hosp Epidemiol. 2007;28:892–5.

    Article  PubMed  Google Scholar 

  7. Willems E, Smismans A, Cartuyvels R, et al. The preanalytical optimization of blood cultures: a review and the clinical importance of benchmarking in 5 Belgian hospitals. Diagn Microbiol Infect Dis. 2012;73:1–8.

    Article  PubMed  Google Scholar 

  8. Alahmadi YM, Aldeyab MA, McElnay JC, et al. Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect. 2011;77:233–6.

    Article  CAS  PubMed  Google Scholar 

  9. Clinical and Laboratory Standards Institute. Principles and procedures for blood cultures: approved guideline. CLSI document M47-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2007.

    Google Scholar 

  10. Storch GA. Diagnostic virology. Clin Infect Dis. 2000;31(3):739–51. https://doi.org/10.1086/314015.

    Article  CAS  PubMed  Google Scholar 

  11. Kauffman CA, Pappas PG, Sobel JD, Dismukes WE. Essentials of clinical mycology. New York: Springer; 2011.

    Book  Google Scholar 

  12. Leber AL. Clinical microbiology procedures handbook. Washington, DC: American Society for Microbiology, ASM Press; 2016.

    Book  Google Scholar 

  13. Sangoi AR, Rogers WM, Longacre TA, Montoya JG, Baron EJ, Banaei N. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens: a ten-year retrospective review at a single institution. Am J Clin Pathol. 2009;131:364–75.

    Article  PubMed  Google Scholar 

  14. Miller JM, Binnicker MJ, Campbell S, et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infec Dis. 2018;67(6):e1–e94.

    Article  Google Scholar 

  15. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greigen K, Loeffelholz M. A Purohit PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol. 1994;32:335–51.

    Google Scholar 

  17. Tenover FC, Jones RN, Swenson JM, et al. Methods for improved detection of oxacillin resistance in coagulase-negative staphylococci: results of a multicenter study. J Clin Microbiol. 1999;37:4051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell CA, Uhl JR, Hadfield TL, et al. Detection of Bacillus anthracis DNA by LightCycler PCR. J Clin Microbiol. 2002;40:2897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. North Am J Med Sci. 2012;4:429–34.

    Article  Google Scholar 

  20. Arora DK, Das S, Sukumar M. Analyzing microbes: manual of molecular biology techniques. Heidelberg: Springer; 2013.

    Book  Google Scholar 

  21. Hosseini S, Vázquez-Villegas P, Rito-Palomares M, Martinez-Chapa SO. Enzyme-linked immunosorbent assay (ELISA): from A to Z. Singapore: Springer; 2018.

    Book  Google Scholar 

  22. Lehmann LS, Spivak JL. Rapid and definitive diagnosis of infectious diseases using peripheral blood smears. J Intensive Care Med. 1992;7:36–47.

    Article  CAS  PubMed  Google Scholar 

  23. Lv J, Zong H, Ma G, et al. Predictive significance of peripheral blood smears in patients with fever of unknown origin: a retrospective study of 2871 cases. Clin Lab. 2015;61:1643–52.

    CAS  PubMed  Google Scholar 

  24. Fred HL, Hassan Y. Eyeing pathogens in the peripheral blood film. Hosp Pract. 1999;34:124–6.

    Article  CAS  Google Scholar 

  25. Forbes JD, Knox NC, Peterson C, Reimer AR. Highlighting clinical metagenomics for enhanced diagnostic decision-making: a step towards wider implementation. Comput Struct Biotechnol J. 2018;16:108–20.

    Article  PubMed  PubMed Central  Google Scholar 

  26. “BIOFIRE® FILMARRAY®.” BioMérieux, www.biomerieux-usa.com/clinical/biofire-film-array.

  27. Buss SN, Leber A, Chapin K, et al. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol. 2015;53:915–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. World Health Organization. WHO endorses new rapid tuberculosis test; 2010. Dec 8., Available: http://www.who.int/mediacentre/news/releases/2010/tb_test_20101208/en/index.html. Accessed 15 June 2011.

  29. Boehme CC, et al. Rapid molecular detection of tuberculosis and rifampin resistance. NEJM. 2010;363:1005–15.

    Article  CAS  PubMed  Google Scholar 

  30. Blakemore R, et al. Evaluation of the analytical performance of the Xpert MTB/RIF Assay. J Clin Microbiol. 2010;48(7):2495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on demand, near-patient technology. J Clin Microbiol. 2010;48:229–37.

    Article  CAS  PubMed  Google Scholar 

  32. Ma Q, Yao J, Yuan S, Liu H, Wei N, Zhang J, Shan W. Development of a lateral flow recombinase polymerase amplification assay for rapid and visual detection of Cryptococcus neoformans/C. gattii in cerebral spinal fluid. BMC Infect Dis. 2019;19(1):108.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giavarina D, Lippi G. Blood venous sample collection: recommendations overview and a checklist to improve quality. Clin Biochem. 2017;50:568–73.

    Article  PubMed  Google Scholar 

  35. Clinical Laboratory Standards Institute. Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture Approved Standard. 6th ed. Wayne, PA: CLSI document H3-A6. Clinical Laboratory Standards Institute; 2007.

    Google Scholar 

  36. Tuuminen T. Urine as a specimen to diagnose infections in twenty-first century: focus on analytical accuracy. Front Immunol. 2012;3:45. https://doi.org/10.3389/fimmu.2012.00045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller JM, Binnicker MJ, Campbell S, et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–e94.

    Article  PubMed  Google Scholar 

  38. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–111.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dryden MS, Gabb RJ, Wright SK. Empirical treatment of severe acute community-acquired gastroenteritis with ciprofloxacin. Clin Infect Dis. 1996;22(6):1019–25.

    Article  CAS  PubMed  Google Scholar 

  40. Shane AL, Mody RK, Crump JA, et al. Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin Infect Dis. 2017;65(12):e45–80.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bassis CM, Moore NM, Lolans K, et al. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol. 2017;17(1):78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kallstrom G. Are quantitative bacterial wound cultures useful? J Clin Microbiol. 2014;52(8):2753–6. https://doi.org/10.1128/jcm.00522-14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rhoads DD, et al. Comparison of culture and molecular identification of bacteria In chronic wounds. Int J Mol Sci. 2012;13(3):2535–50. MDPI AG. https://doi.org/10.3390/ijms13032535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Christie LJ, Loeffler AM, Honarmand S, et al. Diagnostic challenges of central nervous system tuberculosis. Emerg Infect Dis. 2008;14:1473–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. American Society of Microbiology. https://www.asm.org/ASM/media/Policy-and-Advocacy/LRN/Sentinel%20Files/AnthraxLRN-Sept2017.pdf. Accessed 5 Feb 2019.

  46. American Society of Microbiology. https://www.asm.org/ASM/media/Policy-and-Advocacy/LRN/Sentinel%20Files/Botulism-July2013.pdf. Accessed 5 Feb 2019.

  47. American Society of Microbiology. https://www.asm.org/ASM/media/Policy-and-Advocacy/LRN/Sentinel%20Files/Smallpox_July2013.pdf. Accessed 5 Feb 2019.

  48. Centers for Disease Control. https://www.cdc.gov/vhf/ebola/laboratory-personnel/safe-specimen-management.html. Accessed 5 Feb 2019.

  49. Hazelton PR, Gelderblom HR. Electron microscopy for rapid diagnosis of emerging infectious agents. Emerg Infect Dis. 2003;9(3):294–303.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Information on Collection of Respiratory Specimens for Influenza Virus Testing | CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/flu/professionals/diagnosis/info-collection.htm. Accessed 20 May 2019.

  51. Ginocchio CC, McAdam AJ. Current best practices for respiratory virus testing. J Clin Microbiol. 2011;49(9 Supplement):S44–8.

    Article  PubMed Central  Google Scholar 

  52. Azar MM, Landry ML. Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: a Paradigm Shift to Molecular Tests. J Clin Microbiol. 2018;56(7).

    Google Scholar 

  53. Racsa LD, et al. Viral hemorrhagic fever diagnostics. Clin Infect Dis. 2016;62(2):214–9. https://doi.org/10.1093/cid/civ792.

    Article  CAS  PubMed  Google Scholar 

  54. Marty AM, et al. Viral hemorrhagic fevers. Clin Lab Med. 2006;26(2):345–86. Elsevier BV. https://doi.org/10.1016/j.cll.2006.05.001.

    Article  PubMed  Google Scholar 

  55. World Health Organization. Laboratory biosafety manual. Geneva, CH: World Health Organization; 2004. Available at: http://www.who.int/csr/resources/publications/biosafety/Biosafety7.pdf?ua=1. Accessed 9 Jun 2015.

    Google Scholar 

  56. Fajfr M, Ruzek D. Laboratory diagnosis of viral hemorrhagic fevers. In: Viral hemorrhagic fevers. Boca Raton, FL: CRC Press; 2013. https://doi.org/10.1201/b15172-14.

    Chapter  Google Scholar 

  57. Geisbert TW, Jahrling PB. Differentiation of filoviruses by electron microscopy. Virus Res. 1995;39(2–3):129–50. Elsevier BV. https://doi.org/10.1016/0168-1702(95)00080-1.

    Article  CAS  PubMed  Google Scholar 

  58. Zaki SR, et al. A novel immunohistochemical assay for the detection of ebola virus in skin: implications for diagnosis, spread, and surveillance of ebola hemorrhagic fever. J Infect Dis. 1999;179(s1):S36–47. Oxford University Press (OUP). https://doi.org/10.1086/514319.

    Article  PubMed  Google Scholar 

  59. Drosten C, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa Virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40(7):2323–30. American Society For Microbiology. https://doi.org/10.1128/jcm.40.7.2323-2330.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kennedy P, Quan P, Lipkin W. Viral encephalitis of unknown cause: current perspective and recent advances. Viruses. 2017;9(6):138.

    Article  PubMed Central  CAS  Google Scholar 

  61. Kupila L, Vuorinen T, Vainionpaa R, Hukkanen V, Marttila RJ, Kotilainen P. Etiology of aseptic meningitis and encephalitis in an adult population. Neurology. 2006;66(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  62. Krajden M, McNabb G, Petric M. The laboratory diagnosis of hepatitis B virus. Can J Infect Dis Med Microbiol. 2005;16(2):65–72.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang H, Lu S, Liaw Y, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med. 2002;347(3):168–74.

    Article  CAS  PubMed  Google Scholar 

  64. Test Center. Viral hepatitis: laboratory support of diagnosis and management. https://www.questdiagnostics.com/testcenter/testguide.action?dc=CF_ViralHepatitis. Accessed 28 May 2019.

  65. Centers for Disease Control and Prevention. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR Recomm Rep. 2006;55. RR-14:1–17.

    Google Scholar 

  66. Brenner BG, Roger M, Routy JP, et al. High rates of forward transmission events after acute/early HIV-1 infection. J Infect Dis. 2007;195:951–9.

    Article  CAS  PubMed  Google Scholar 

  67. Cornett JK, Kim TJ. Laboratory Diagnosis of HIV in adults: a review of current methods. Clin Infect Dis. 2013;57(5).

    Article  PubMed  Google Scholar 

  68. Murphy G, Atiken C. HIV testing-the perspective from across the pond. J Clin Virol. 2011;52 suppl 1:S71–6.

    Article  PubMed  Google Scholar 

  69. Owen SM. Testing for acute HIV infection: implications for treatment as prevention. Curr Opin HIV AIDS. 2012;7:125–30.

    Article  CAS  PubMed  Google Scholar 

  70. Owen SM, Yang C, Spira T, et al. Alternative algorithms for human immunodeficiency virus infection diagnosis using tests that are licensed in the United States. J Clin Microbiol. 2008;46:1588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pandori MW, Hackett J Jr, et al. Assessment of the ability of a fourth generation immunoassay for HIV antibody and p24 antigen to detect both acute and recent HIV infection in a high-risk setting. J Clin Microbiol. 2009;47:2639–42.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chavez P, Wesolowski L, Patel P, et al. Evaluation of the performance of the Abbott ARCHITECT HIV Ag/Ab Combo Assay. J Clin Virol. 2011;52 Suppl 1:S51–5.

    Article  PubMed  CAS  Google Scholar 

  73. Bentsen C, Mclaughlin L, et al. Performance evaluation of the Bio-Rad Laboratories GS HIV Combo Ag/Ab EIA, a 4th generation HIV assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma. J Clin Virol. 2011;52 Suppl 1:S57–61.

    Article  PubMed  CAS  Google Scholar 

  74. Delaney KP, Branson BM, Uniyal A, et al. Evaluation of the performance characteristics of 6 rapid HIV antibody tests. Clin Infec Dis. 2011;52:257–63.

    Article  CAS  Google Scholar 

  75. Fox J, O’Shea S. Low rates of p24 antigen detection using a fourth generation point of care HIV test. Sex Transm Infect. 2011;87:178–9.

    Article  PubMed  Google Scholar 

  76. Chou S. Newer methods for diagnosis of cytomegalovirus infection. Clin Infect Dis. 1990;12 Suppl 7:S727–36.

    Article  CAS  Google Scholar 

  77. Kotton CN, Kumar D, Caliendo AM, et al. Transplantation Society International CMV Consensus Group. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89:779–95.

    Article  PubMed  Google Scholar 

  78. Razonable RR, Paya CV, Smith TF. Role of the laboratory in diagnosis and management of cytomegalovirus infection in hematopoietic stem cell and solid-organ transplant recipients. J Clin Microbiol. 2002;40(3):746–52.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wreghitt TG, Teare EL, Sule O, Devi R, Rice P. Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis. 2003;37(12):1603–6.

    Article  CAS  PubMed  Google Scholar 

  80. Hess R. Routine Estein-Barr virus diagnostics from the laboratory perspective: still challenging after 35 years. J Clin Microbiol. 2004;42(8):3381–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. De Paschale M, Pierangelo C. Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World. J Virol. 2012;1(1):31–43.

    Google Scholar 

  82. Singh A, et al. The laboratory diagnosis of herpes simplex virus infections. Can J Infect Dis Med Microbiol. 2005;16(2):92–8. https://doi.org/10.1155/2005/318294.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Filen F, et al. Duplex real-time polymerase chain reaction assay for detection and quantification of herpes simplex virus type 1 and herpes simplex virus type 2 in genital and cutaneous lesions. Sex Transm Dis. 2004;31:331–6.

    Article  PubMed  Google Scholar 

  84. Ramaswamy M, McDonald C, et al. Diagnosis of genital herpes by real time PCR in routine clinical practice. Sex Transm Infect. 2004;80:406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhattarakosol P, et al. Intratypic variation of herpes simplex virus type 2 isolates detected by monoclonal antibodies against viral glycoproteins. Arch Virol. 1990;115:89.

    Article  CAS  PubMed  Google Scholar 

  86. Sauerbrei A. Herpes Genitalis: diagnosis, treatment and prevention. Geburtshilfe und Frauenheilkunde. 2016;76(12):1310–7. https://doi.org/10.1055/s0042-116494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lafferty WE, Krofft S, et al. Diagnosis of herpes simplex virus by direct immunofluorescence and viral isolation from samples of external genital lesions in a high prevalence population. J Clin Microbiol. 1987;25:323–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vitko NP, Richardson AR. Laboratory maintenance of methicillin-resistant Staphylococcus aureus (MRSA). Curr Protoc Microbiol. 2013;Chapter 9:Unit 9C.2.

    PubMed  Google Scholar 

  89. Lewis JS, Jorgensen JH. Inducible clindamycin resistance in staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis. 2005;40(2):280–5.

    Article  PubMed  Google Scholar 

  90. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2(1):16020.

    Article  PubMed  PubMed Central  Google Scholar 

  91. McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith K. Who Are the HACEK Organisms? American Society for Microbiology. https://www.asm.org/Articles/2019/February/Who-are-the-HACEK-organisms. Published February 11, 2019. Accessed 28 May 2019.

  93. Walkty A. Cardiobacterium hominis endocarditis: a case report and review of the literature. Can J Infect Dis Med Microbiol. 2005;16(5):293–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chambers ST, Murdoch D, Morris A, et al. HACEK infective endocarditis: characteristics and outcomes from a large, multi-national cohort. PLoS ONE. 2013;8(5):e63181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Centers for Disease Control and Prevention. Updated guidelines for the use of nucleic acid amplification testing in the diagnosis of tuberculosis. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5801a3.htm?s_cid=mm5801a3_e. Accessed 24 May 2019.

  96. Lewinsohn DM, Leonard MK, LoBue PA, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. CLINID. 2017;64(2):e1–e33.

    Article  Google Scholar 

  97. Biggs HM, Behravesh CB, Bradley KK, et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis — United States. MMWR Recomm Rep. 2016;65(2):1–44.

    Article  PubMed  Google Scholar 

  98. Walker DH. Rickettsiae. In: Baron S, editor. Medical microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996. Chapter 38. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7624/.

    Google Scholar 

  99. Branda J, Aguero-Rosenfeld M, Ferraro M, Johnson B, Wormser G, Steere A. 2-tiered antibody testing for early and late lyme disease using only an immunoglobulin G blot with the addition of a VlsE band as the second-tier test. Clin Infect Dis. 2010;50(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  100. Centers for Disease Control and Prevention. Two-step laboratory testing process. https://www.cdc.gov/lyme/diagnosistesting/labtest/twostep/index.html. Accessed 24 May 2019.

  101. Viau R, Frank KM, Jacobs MR, Wilson B, Kaye K, Donskey CJ, et al. Intestinal carriage of carbapenemase-producing organisms: current status of surveillance methods. Clin Microbiol Rev. 2015;29(1):1–27.

    Article  PubMed Central  Google Scholar 

  102. Chang K, Chung C, Yeh C, Hsu K, Chin Y, Huang S, et al. Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods. 2018;147:36–42.

    Article  CAS  PubMed  Google Scholar 

  103. Saubolie M, Sussland D. Nocardiosis. J Clin Microbiol. 2003;41(10):4497–501.

    Article  Google Scholar 

  104. Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a Focus on Lemierre’s syndrome. Clin Microbiol Rev. 2007;20(4):622–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bank S, Nielsen HM, Mathiasen BH, Leth DC, Kristensen LH, Prag J. Fusobacterium necrophorum- detection and identification on a selective agar. APMIS. 2010;118(12):994–9.

    Article  PubMed  Google Scholar 

  106. Gherna M, Merz WG. Identification of Candida albicans and Candida glabrata within 1.5 hours directly from positive blood culture bottles with a shortened peptide nucleic acid fluorescence in situ hybridization protocol. J Clin Microbiol. 2008;47(1):247–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Clancy CJ, Nguyen MH. Diagnosing invasive candidiasis. J Clin Microbiol. 2018;56(5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Spanu T, Posteraro B, Fiori B, Dinzeo T, Campoli S, Ruggeri A, et al. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2011;50(1):176–9.

    Article  PubMed  CAS  Google Scholar 

  109. McMullan R, Metwally L, Coyle PV, Hedderwick S, Mccloskey B, Oneill H, et al. A prospective clinical trial of a real-time polymerase chain reaction assay for the diagnosis of candidemia in nonneutropenic, critically Ill adults. Clin Infect Dis. 2008;46(6):890–6.

    Article  CAS  PubMed  Google Scholar 

  110. Centers for Disease Control and Prevention. Information for Healthcare Professionals about Histoplasmosis. https://www.cdc.gov/fungal/diseases/histoplasmosis/health-professionals.html. Accessed 24 May 2019.

  111. Azar MM, Hage CA. Laboratory diagnostics for histoplasmosis. J Clin Microbiol. 2017;55(6):1612–20. https://doi.org/10.1128/JCM.02430-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Centers for Disease Control and Prevention. Information for Healthcare Professionals about Valley Fever (Coccidioidomycosis). https://www.cdc.gov/fungal/diseases/coccidioidomycosis/health-professionals.html#ten. Accessed 24 May 2019.

  113. Saubolle MA. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  114. Posteraro B, Efremov L, Leoncini E, Amore R, Posteraro P, Ricciardi W, Sanguinetti M. Are the conventional commercial yeast identification methods still helpful in the era of new clinical microbiology diagnostics? A meta-analysis of their accuracy. J Clin Microbiol. 2015;53(8):2439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS ONE. 2012;7(5):e37566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martynowicz MA, Prakash UB. Pulmonary blastomycosis: an appraisal of diagnostic techniques. Chest. 2002;121(3):768.

    Article  PubMed  Google Scholar 

  117. Frost HM, Novicki TJ. Blastomyces antigen detection for diagnosis and management of blastomycosis. J Clin Microbiol. 2015;53(11):3600–36002.

    Article  CAS  Google Scholar 

  118. Centers for Disease Control and Prevention. Information for Healthcare Professionals about Mucormycosis. https://www.cdc.gov/fungal/diseases/mucormycosis/health-professionals.html. Accessed 24 May 2019.

  119. Riley TT, Muzny CA, Swiatlo E, Legendre DP. Breaking the Mold. Ann Pharmacother. 2016;50(9):747–57.

    Article  CAS  PubMed  Google Scholar 

  120. Miceli MH, Kauffman CA. Aspergillus galactomannan for diagnosing invasive aspergillosis. JAMA. 2017;318(12):1175.

    Article  PubMed  Google Scholar 

  121. Ostrosky-Zeichner L, Alexander BD, Kett DH, Vazquez J, Pappas PG, Saeki F, et al. Multicenter clinical evaluation of the (1-3)-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41(5):654–9.

    Article  CAS  PubMed  Google Scholar 

  122. Centers for Disease Control and Prevention. Malaria – diagnostic tools. Atlanta, GA: CDC; 2017.

    Google Scholar 

  123. McHardy IH, et al. Detection of intestinal protozoa in the clinical laboratory. J Clin Microbiol. 2013;52(3):712–20. American Society For Microbiology. https://doi.org/10.1128/jcm.02877-13.

    Article  PubMed  Google Scholar 

  124. Fletcher SM, Stark D, Harkness J, Ellis J. Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev. 2012;25:420–49. https://doi.org/10.1128/CMR.05038-11.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15:66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A, L’Hostis M, Chauvin A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology. 2007;134:197–207.

    Article  CAS  PubMed  Google Scholar 

  127. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parastiol. 1993;61:315–20.

    Article  CAS  Google Scholar 

  128. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K. Detection of Four Plasmodium Species in Blood from Humans by 18S rRNA Gene Subunit-Based and Species-Specific Real-Time PCR Assays. J Clin Microbiol. 2004;42(12):5636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hojgaard A, Lukacik G, Piesman J. Detection of Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti, with two different multiplex PCR assays. Ticks Tick Borne Dis. 2014;5:349–51.

    Article  PubMed  Google Scholar 

  130. CDC - Dpdx - Serum/Plasma Specimens. Cdc.Gov; 2019. https://www.cdc.gov/dpdx/diagnosticprocedures/serum/antibodydetection.html.

  131. Wilson M, Schantz P, Nutman T, Tsang VCW. Clinical immunoparasitology. In: Rose NR, Hamilton RG, Detrick B, editors. Manual of clinical laboratory immunology. 6th ed. Washington: American Society for Microbiology; 2002.

    Google Scholar 

  132. Centers for Disease Control and Prevention. DPDx—laboratory identification of parasitic diseases of public health concern. Atlanta, GA: CDC; 2017.

    Google Scholar 

  133. Garcia LS. Diagnostic medical parasitology. 5th ed. Santa Monica, CA: ASM Press; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzal, A., Kaplan, H., Motazedi, T., Qureshi, T., Woc-Colburn, L. (2020). Diagnostics: The Role of the Laboratory. In: Hidalgo, J., Woc-Colburn, L. (eds) Highly Infectious Diseases in Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-33803-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33803-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33802-2

  • Online ISBN: 978-3-030-33803-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics