Abstract
This paper introduces a new negotiating agent model for automated negotiation. We focus on applications without time pressure with multidimensional negotiation on both continuous and discrete domains. The agent bidding strategy relies on Monte Carlo Tree Search, which is a trendy method since it has been used with success on games with high branching factor such as Go. It also exploits opponent modeling techniques thanks to Gaussian process regression and Bayesian learning. Evaluation is done by confronting the existing agents that are able to negotiate in such context: Random Walker, Tit-for-tat and Nice Tit-for-Tat. None of those agents succeeds in beating our agent. Also, the modular and adaptive nature of our approach is a huge advantage when it comes to optimize it in specific applicative contexts.
Keywords
- Automated negotiation
- MCTS
- Supply chain
This is a preview of subscription content, access via your institution.
Buying options



References
Baarslag, T.: Exploring the Strategy Space of Negotiating Agents: A Framework for Bidding, Learning and Accepting in Automated Negotiation. Ph.D. thesis, Delft University of Technology (2016)
Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V., Jonker, C.M.: Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Auton. Agents Multi-Agent Syst. 20(1), 1–50 (2015). https://doi.org/10.1007/s10458-015-9309-1
Baarslag, T., Hindriks, K.V.: Accepting optimally in automated negotiation with incomplete information. In: AAMAS 2013, pp. 715–722. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2013). http://dl.acm.org/citation.cfm?id=2484920.2485033
Baarslag, T., Hindriks, K.V., Jonker, C.: A tit for tat negotiation strategy for real-time bilateral negotiation. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions, vol. 435, pp. 229–233. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_18
Browne, C.C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012). https://doi.org/10.1109/TCIAIG.2012.2186810
Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7
Couëtoux, A.: Monte Carlo Tree Search for Continuous and Stochastic Sequential Decision Making Problems. Ph.D. thesis, Université Paris XI (2013)
Dziuba, D.T.: Crowdfunding platforms in invoice trading as alternative financial markets. Roczniki Kolegium Analiz Ekonomicznych/Szkoła Główna Handlowa 49, 455–464 (2018)
Fang, F., Xin, Y., Xia, Y., Haitao, X.: An opponent’s negotiation behavior model to facilitate buyer-seller negotiations in supply chain management. In: 2008 International Symposium on Electronic Commerce and Security (2008). https://doi.org/10.1109/ISECS.2008.93
Faratin, P., Jennings, N.R., Sierra, C.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3–4), 159–182 (1998). https://doi.org/10.1016/S0921-8890(98)00029-3
Finnsson, H.: Generalized Monte Carlo tree search extensions for general game playing. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2012, pp. 1550–1556. AAAI Press (2012). http://dl.acm.org/citation.cfm?id=2900929.2900948
Fukuta, N., Ito, T., Zhang, M., Fujita, K., Robu, V. (eds.): Recent Advances in Agent-based Complex Automated Negotiation. SCI, vol. 638. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30307-9
Guttman, R.H., Moukas, A.G., Maes, P.: Agent-mediated electronic commerce: a survey. Knowl. Eng. Rev. 13(02), 147–159 (1998). https://doi.org/10.1007/3-540-58266-5_1. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=71015&fileId=S0269888998002082
Hindriks, K., Tykhonov, D.: Opponent modelling in automated multi-issue negotiation using bayesian learning. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 331–338 (2008). http://dl.acm.org/citation.cfm?id=1402383.1402433
de Jonge, D., Sierra, C.: GANGSTER: an automated negotiator applying genetic algorithms. In: Fukuta, N., Ito, T., Zhang, M., Fujita, K., Robu, V. (eds.) Recent Advances in Agent-based Complex Automated Negotiation. SCI, vol. 638, pp. 225–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30307-9_14
de Jonge, D., Zhang, D.: Automated negotiations for general game playing. In: AAMAS 2017, Richland, SC, pp. 371–379 (2017). http://dl.acm.org/citation.cfm?id=3091125.3091183
Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29
Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014). https://doi.org/10.1111/j.1467-8640.2012.00463.x
Nash Jr., J.F.: The bargaining problem. Econometrica J. Econ. Soc. 18, 155–162 (1950)
Osborne, M.J., Rubinstein, A.: A Course in Game Theory, 12th edn. MIT Press, Cambridge (1994)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica J. Econ. Soc. 50, 97–109 (1982)
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Using Gaussian processes to optimise concession in complex negotiations against unknown opponents. In: IJCAI 2011, pp. 432–438 (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-080
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Buron, C.L.R., Guessoum, Z., Ductor, S. (2019). MCTS-Based Automated Negotiation Agent. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds) PRIMA 2019: Principles and Practice of Multi-Agent Systems. PRIMA 2019. Lecture Notes in Computer Science(), vol 11873. Springer, Cham. https://doi.org/10.1007/978-3-030-33792-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-33792-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33791-9
Online ISBN: 978-3-030-33792-6
eBook Packages: Computer ScienceComputer Science (R0)