Coordination of Mobile Agents for Simultaneous Coverage

  • Petra MazdinEmail author
  • Bernhard RinnerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11873)


Simultaneous environment coverage represents a challenging multi-agent application, in which mobile agents (drones) must cover surfaces by simultaneously capturing images from different viewpoints. It constitutes a complex optimization problem with potentially conflicting criteria, such as mission time and coverage quality, and requires dynamic coordination of agent tasks. In this paper, we introduce a decentralized coordination method, adaptive to a dynamic and a priori unknown 3D environment. Our approach selects the role an agent should take on and coordinates the assignment of agents to their computed viewpoints. Our main goal is to cover all detected objects in the environment at a certain quality as soon as possible. We evaluate the methods in AirSim in different setups and assess how the proposed methods respond to dynamic changes in the environment.


Multi-agent system Simultaneous coverage Drones Viewpoint constellations Market-based task assignment AirSim simulator 



This work is supported by the Karl Popper Kolleg on Networked Autonomous Aerial Vehicles ( at the University of Klagenfurt.


  1. 1.
    Badreldin, M., Hussein, A., Khamis, A.: A comparative study between optimization and market-based approaches to multi-robot task allocation. Adv. Artif. Intell. 2013, 12 (2013). Scholar
  2. 2.
    Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009). Scholar
  3. 3.
    Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon “next-best-view” planner for 3D exploration. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1462–1468. IEEE (2016).
  4. 4.
    Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3D exploration and surface inspection. Auton. Robot. 42(2), 291–306 (2018). Scholar
  5. 5.
    Capitan, J., Spaan, M.T., Merino, L., Ollero, A.: Decentralized multi-robot cooperation with auctioned POMDPs. Int. J. Robot. Res. 32(6), 650–671 (2013). Scholar
  6. 6.
    Chang, C., Chatterjee, S.: Quantization error analysis in stereo vision. In: Proceedings of Asilomar Conference on Signals, Systems & Computers, pp. 1037–1041. IEEE (1992).
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). Scholar
  8. 8.
    Fonooni, B., Jevtić, A., Hellström, T., Janlert, L.E.: Applying ant colony optimization algorithms for high-level behavior learning and reproduction from demonstrations. Robot. Auton. Syst. 65, 24–39 (2015). Scholar
  9. 9.
    Freundlich, C., Zhang, Y., Zhu, A.Z., Mordohai, P., Zavlanos, M.M.: Controlling a robotic stereo camera under image quantization noise. Int. J. Robot. Res. 36(12), 1268–1285 (2017). Scholar
  10. 10.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). Scholar
  11. 11.
    Gallup, D., Frahm, J.M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008).
  12. 12.
    Gerkey, B.P., Mataric, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  13. 13.
    Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1071–1078. IEEE (2015).
  14. 14.
    Jiang, A.X., Procaccia, A.D., Qian, Y., Shah, N., Tambe, M.: Defender (mis)coordination in security games. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)Google Scholar
  15. 15.
    Khan, A., Rinner, B., Cavallaro, A.: Cooperative robots to observe moving targets: a review. IEEE Trans. Cybern. 48(1), 187–198 (2018). Scholar
  16. 16.
    Mazdin, P., Rinner, B.: Efficient and QoS-aware drone coordination for simultaneous environment coverage. In: Proc. IEEE Conference on Multimedia Information Processing and Retrieval, pp. 333–338. IEEE (2019).
  17. 17.
    McIntire, M., Nunes, E., Gini, M.: Iterated multi-robot auctions for precedence-constrained task scheduling. In: Proceedings of International Conference on Autonomous Agents & Multiagent Systems, pp. 1078–1086. International Foundation for Autonomous Agents and Multiagent Systems (2016)Google Scholar
  18. 18.
    Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009). Scholar
  19. 19.
    Nakabo, Y., Mukai, T., Hattori, Y., Takeuchi, Y., Ohnishi, N.: Variable baseline stereo tracking vision system using high-speed linear slider. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1567–1572. IEEE (2005).
  20. 20.
    Nunes, E., Gini, M.: Multi-robot auctions for allocation of tasks with temporal constraints. In: Proceedings of AAAI Conference on Artificial Intelligence (2015)Google Scholar
  21. 21.
    Perez-Carabaza, S., Scherer, J., Rinner, B., Lopez-Orozco, J.A., Besada-Portas, E.: UAV trajectory optimization for minimum time search with communication constraints and collision avoidance. Eng. Appl. Artif. Intell. 85, 357–371 (2019)CrossRefGoogle Scholar
  22. 22.
    Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Proceedings of Field and Service Robotics (2017)Google Scholar
  23. 23.
    Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press (2011).
  24. 24.
    Weyrer, M., Rinner, B.: UAV motion planning and control for multi-coverage of 3D environments. In: Proceedings of International Conference on Unmanned Aircraft Systems, pp. 939–946 (2018).
  25. 25.
    Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: communications, coordination, and sensing. Ad Hoc Networks 68(1), 1–15 (2018). Scholar
  26. 26.
    Yoder, L., Scherer, S.: Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 427–440. Springer, Cham (2016). Scholar
  27. 27.
    Zhang, C., Lesser, V.: Coordinated multi-agent reinforcement learning in networked distributed POMDPs. In: Proceedings of AAAI Conference on Artificial Intelligence (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karl Popper Kolleg on Networked Autonomous Aerial VehiclesUniversity of KlagenfurtKlagenfurtAustria
  2. 2.Institute of Networked and Embedded SystemsUniversity of KlagenfurtKlagenfurtAustria

Personalised recommendations