Skip to main content

Fuzzy Relational Linear Programming

  • Chapter
  • First Online:
Fuzzy Relational Mathematical Programming

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 389))

  • 331 Accesses

Abstract

Since Sanchez [1] proposed the resolution to fuzzy relational equations (FREs), many researchers have studied FREs and fuzzy relational inequalities (FRIs) [2,3,4,5,6,7]. FRE theory has been applied in many different fields, including fuzzy control [8], fuzzy decision-making [9], fuzzy modeling [10], fuzzy analysis [11], medical diagnosis [12, 13], compression and decompression of images and videos [14,15,16,17,18], and estimation of flow rates in a chemical plant and pipe network and peak rush hours for transport systems [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchez, E.: Resolution of composite fuzzy relation equation. Inf. Control 30, 38–48 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Han, S.C., Li, H.X., Wang, J.Y.: Resolution of finite fuzzy relation equations based on strong pseudo-t-norms. Appl. Math. Lett. 19, 752–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Higashi, M., Klir, G.J.: Resolution of finite fuzzy relation equations. Fuzzy Sets Syst. 13, 65–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Loetamonphong, J., Fang, S.C., Young, R.E.: Multi-objective optimization problems with fuzzy relation equation constraints. Fuzzy Sets Syst. 127, 141–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pedrycz, W., Vasilakos, A.V.: Modularization of fuzzy relational equations. Soft Comput. 6, 33–37 (2002)

    Article  MATH  Google Scholar 

  6. Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus: Theory. Applications and Software. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  7. Vasantha Kandasamy, W.B., Smarandache, F.: Some applications of FRE. In: Fuzzy Relational Maps and Neutrosophic Relational Maps, Hexis, Church Rock, pp. 167–220 (2004)

    Google Scholar 

  8. Dubois, D., Prade, H.: Fuzzy Sets and Systems-Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  9. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wenstop, F.: Deductive verbal models of organizations. Int. J. Man-Mach. Stud. 8, 293–311 (1976)

    Article  MATH  Google Scholar 

  11. Pedrycz, W.: An approach to the analysis of fuzzy systems. Int. J. Control 34, 403–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sanchez, E.: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 221–234. North-Holland, Amsterdam (1977)

    Google Scholar 

  13. Wang, H.F., Wu, C.W., Ho, C.H., Hsieh, M.J.: Diagnosis of gastri ccancer with fuzzy pattern recognition. J. Syst. Eng. 2, 151–163 (1992)

    Google Scholar 

  14. Dubois, D., Prade, H.: Operations on fuzzy number. Int. J. Syst. Sci. 9(6), 613–626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiNola, A., Russo, C.: Lukasiewicz transform and it’s application to compression and reconstruction of digital images. Inf. Sci. 177, 1481–1498 (2007)

    Article  MATH  Google Scholar 

  16. Loia, V., Sessa, S.: Fuzzy relation equations for coding/decoding processes of images and videos. Inf. Sci. 171, 145–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nobuhara, H., Pedrycz, W.: Fast solving method of fuzzy relational equation and it application to lossy image compression/reconstruction. IEEE Trans. Fuzzy Syst. 8(3), 325–334 (2000)

    Article  Google Scholar 

  18. Nobuhara, H., Bede, B., Hirota, K.: On various eigen fuzzy sets and their application to image reconstruction. Inf. Sci. 176, 2988–3010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Czogala, E., Drewniak, J., Pedrycz, W.: Fuzzy relation equations on a finite set. Fuzzy Sets Syst. 7, 89–101 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, S.C., Li, G.: Solving fuzzy relation equations with a linear objective function. Fuzzy Sets Syst. 103, 107–113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loetamonphong, J., Fang, S.C.: An efficient solution procedure for fuzzy relational equations with max-product composition. IEEE Trans. Fuzzy Syst. 7(4), 441–445 (1999)

    Article  Google Scholar 

  22. Chen, L., Wang, P.P.: Fuzzy relation equation (II): the branch-point-solutions and the categorized minimal solutions. Soft Comput. 11, 33–40 (2007)

    Article  MATH  Google Scholar 

  23. Shieh, B.S.: Solutions of fuzzy relation equations based on continuous t-norms. Inform. Sci. 177, 4208–4215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shieh, B.S.: New resolution of finite fuzzy relation equations with max-min composition. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 16(1), 19–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yeh, C.T.: On the minimal solutions of max-min fuzzy relational equations. Fuzzy Sets Syst. 159, 23–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, Y.K., Guu, S.M.: Minimizing a linear function under a fuzzy max-min relational equation constraint. Fuzzy Sets Syst. 150, 147–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, Y.K., Guu, S.M., Liu, J.Y.C.: An accelerated approach for solving fuzzy relation equations with a linear objective function. IEEE Trans. Fuzzy Syst. 10(4), 552–558 (2002)

    Article  Google Scholar 

  28. Nola, A.D., Pedrycz, W., Sessa, S., Zhuang, W.P.: Fuzzy relation equations under a class of triangular norms: a survey and new results. Stochastica 8, 99–145 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Shimbo, M.M.: Solutions of composite fuzzy relational equations with triangular norms. Fuzzy Sets Syst. 16, 53–63 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedrycz, W.: On generalized fuzzy relational equations and their applications. J. Math. Anal. Appl. 107, 520–536 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dubois, D., Prade, H.: New results about properties and semantics of fuzzy set-theoratic operators. In: Wang, P.P., Chang, S.K. (eds.) Fuzzy Sets, pp. 59–75. Plenum Press, New York (1986)

    MATH  Google Scholar 

  32. Li, J.X.: A new algorithm for minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Sets Syst. 159, 2278–2298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oden, G.C.: Integration of fuzzy logical information. J. Exp. Psychol. Hum. Percept. Perform. 106, 565–575 (1977)

    Article  Google Scholar 

  34. Pedrycz, W.: An identification algorithm in fuzzy relation systems. Fuzzy Sets Syst. 13, 153–167 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thole, U., Zimmermann, H.J., Zysno, P.: On the suit-ability of minimum and product operators for intersection of fuzzy sets. Fuzzy Sets Syst. 2, 167–180 (1979)

    Article  MATH  Google Scholar 

  36. Xu, C.W., Lu, Y.Z.: Fuzzy model identification and self-learning for dynamic systems. IEEE Trans. Syst. Man Cybernet 17, 683–689 (1987)

    Article  MATH  Google Scholar 

  37. Zimmermann, H.J., Zysno, P.: Latent connectives in human decision-making. Fuzzy Sets Syst. 4, 37–51 (1980)

    Article  MATH  Google Scholar 

  38. Yager, R.R.: Some procedures for selecting fuzzy set-theoretic operators. Internat. J. Gen. Syst. 8, 235–242 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Bourke, M.M., Fisher, D.G.: Solution algorithms for fuzzy relational equations with max-product composition. Fuzzy Sets Syst. 94, 61–69 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Di Martino, F., Loia, V., Sessa, S.: Fuzzy transforms for compression and decompression of color videos. Inf. Sci. 180(20), 3914–3931 (2010)

    Article  MathSciNet  Google Scholar 

  41. Qu, X.B., Wang, X.P.: Minimization of linear objective functions under the constraints expressed by a system of fuzzy relation equations. Inf. Sci. 178, 3482–3490 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Loetamonphong, J., Fang, S.C.: Optimization of fuzzy relational equations with max-product composition. Fuzzy Sets Syst. 118, 509–517 (2001)

    Article  MATH  Google Scholar 

  43. Wang, P.Z., Zhang, D.Z., Sanchez, E., Lee, E.S.: Latticized linear programming and fuzzy relation inequalities. J. Math. Anal. Appl. 159(1), 72–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  45. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yager, R.R.: A characterization of the extension principle. Fuzzy Sets Syst. 18, 205–217 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zimmermann, H.J.: Fuzzy Sets Theory and Its Application. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  48. Li, P., Fang, S.C.: Latticized linear optimization on the unit interval. IEEE Trans. Fuzzy Syst. 17(6), 1353–1365 (2009)

    Article  Google Scholar 

  49. Yang, S.J.: An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition. Fuzzy Sets Syst. 255, 41–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chang, Ch-W, Shieh, B.S.: Linear optimization problem constrained by fuzzy maxmin relation equations. Inform. Sci. 234, 71–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Abbasi Molai, A.: Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints. Math Comput Model. 51, 1240–1250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yuan Cao .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, BY., Yang, JH., Zhou, XG., Kheiri, Z., Zahmatkesh, F., Yang, XP. (2020). Fuzzy Relational Linear Programming. In: Fuzzy Relational Mathematical Programming. Studies in Fuzziness and Soft Computing, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-33786-5_4

Download citation

Publish with us

Policies and ethics