Advertisement

A Unified Approach to Biclustering Based on Formal Concept Analysis and Interval Pattern Structure

  • Nyoman JuniartaEmail author
  • Miguel Couceiro
  • Amedeo Napoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11828)

Abstract

In a matrix representing a numerical dataset, a bicluster is a submatrix whose cells exhibit similar behavior. Biclustering is naturally related to Formal Concept Analysis (FCA) where concepts correspond to maximal and closed biclusters in a binary dataset. In this paper, a unified characterization of biclustering algorithms is proposed using FCA and pattern structures, an extension of FCA for dealing with numbers and other complex data. Several types of biclusters – constant-column, constant-row, additive, and multiplicative – and their relation to interval pattern structures is presented.

Keywords

Biclustering FCA Gene expression Pattern structures 

References

  1. 1.
    Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07821-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 50–62. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22688-5_4CrossRefGoogle Scholar
  3. 3.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)Google Scholar
  5. 5.
    Duarte, R.P., Simões, Á., Henriques, R., Neto, H.C.: FPGA-based OpenCL accelerator for discovering temporal patterns in gene expression data using biclustering. In: Proceedings of the 6th International Workshop on Parallelism in Bioinformatics, pp. 53–62. ACM (2018)Google Scholar
  6. 6.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44583-8_10CrossRefGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 2nd edn. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Henriques, R., Ferreira, F.L., Madeira, S.C.: BicPAMS: software for biological data analysis with pattern-based biclustering. BMC Bioinform. 18(1), 82 (2017)CrossRefGoogle Scholar
  9. 9.
    Henriques, R., Madeira, S.C.: BicPAM: pattern-based biclustering for biomedical data analysis. Algorithms Mol. Biol. 9(1), 27 (2014)CrossRefGoogle Scholar
  10. 10.
    Henriques, R., Madeira, S.C.: BicSPAM: flexible biclustering using sequential patterns. BMC Bioinform. 15(1), 130 (2014)CrossRefGoogle Scholar
  11. 11.
    Henriques, R., Madeira, S.C., Antunes, C.: F2G: efficient discovery of full-patterns. In: ECML/PKDD nfMCP, pp. 1–9 (2013)Google Scholar
  12. 12.
    Ignatov, D.I., Kuznetsov, S.O., Poelmans, J.: Concept-based biclustering for internet advertisement. In: 2012 IEEE 12th International Conference on Data Mining Workshops (ICDMW), pp. 123–130. IEEE (2012)Google Scholar
  13. 13.
    Ignatov, D.I., Poelmans, J., Zaharchuk, V.: Recommender system based on algorithm of bicluster analysis RecBi. arXiv preprint arXiv:1202.2892 (2012)
  14. 14.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)CrossRefGoogle Scholar
  16. 16.
    Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)CrossRefGoogle Scholar
  17. 17.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)CrossRefGoogle Scholar
  18. 18.
    Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 14(7), S8 (2013)CrossRefGoogle Scholar
  19. 19.
    Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)CrossRefGoogle Scholar
  20. 20.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl-1), S136–S144 (2002)CrossRefGoogle Scholar
  21. 21.
    Veroneze, R., Banerjee, A., Von Zuben, F.J.: Enumerating all maximal biclusters in numerical datasets. Inf. Sci. 379, 288–309 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations