Advertisement

Layered Learning for Early Anomaly Detection: Predicting Critical Health Episodes

  • Vitor CerqueiraEmail author
  • Luis Torgo
  • Carlos Soares
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11828)

Abstract

Critical health events represent a relevant cause of mortality in intensive care units of hospitals, and their timely prediction has been gaining increasing attention. This problem is an instance of the more general predictive task of early anomaly detection in time series data. One of the most common approaches to solve this problem is to use standard classification methods. In this paper we propose a novel method that uses a layered learning architecture to solve early anomaly detection problems. One key contribution of our work is the idea of pre-conditional events, which denote arbitrary but computable relaxed versions of the event of interest. We leverage this idea to break the original problem into two layers, which we hypothesize are easier to solve. Focusing on critical health episodes, the results suggest that the proposed approach is advantageous relative to state of the art approaches for early anomaly detection. Although we focus on a particular case study, the proposed method is generalizable to other domains.

Keywords

Time series Early anomaly detection Healthcare Layered learning 

Notes

Acknowledgements

Vitor Cerqueira is supported by a FCT PhD research grant (SFRH/BD/135705/2018).

References

  1. 1.
    Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Informatics 77(2), 81–97 (2008)CrossRefGoogle Scholar
  2. 2.
    Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: xgboost: eXtreme gradient boosting, 2017. R package version 0.6-4 (2015)Google Scholar
  4. 4.
    Decroos, T., Dzyuba, V., Van Haaren, J., Davis, J.: Predicting soccer highlights from spatio-temporal match event streams. In: AAAI, pp. 1302–1308 (2017)Google Scholar
  5. 5.
    Fawcett, T., Provost, F.: Activity monitoring: noticing interesting changes in behavior. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 53–62. ACM (1999)Google Scholar
  6. 6.
    Ferreira, C., Gama, J., Matias, L., Botterud, A., Wang, J.: A survey on wind power ramp forecasting. Technical report, Argonne National Lab. (ANL), Argonne, IL (United States) (2011)Google Scholar
  7. 7.
    Forkan, A.R.M., Khalil, I., Atiquzzaman, M.: ViSiBiD: a learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Comput. Netw. 113, 244–257 (2017)CrossRefGoogle Scholar
  8. 8.
    Ghosh, S., Feng, M., Nguyen, H., Li, J.: Hypotension risk prediction via sequential contrast patterns of ICU blood pressure. IEEE J. Biomed. Health Inform. 20(5), 1416–1426 (2016)CrossRefGoogle Scholar
  9. 9.
    He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, Hoboken (2013)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)MathSciNetGoogle Scholar
  11. 11.
    Lee, J., Mark, R.: A hypotensive episode predictor for intensive care based on heart rate and blood pressure time series. In: Computing in Cardiology, pp. 81–84. IEEE (2010)Google Scholar
  12. 12.
    Lee, J., Mark, R.G.: An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care. Biomed. Eng. Online 9(1), 62 (2010)CrossRefGoogle Scholar
  13. 13.
    Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)Google Scholar
  14. 14.
    Ribeiro, R.P., Pereira, P., Gama, J.: Sequential anomalies: a study in the railway industry. Mach. Learn. 105(1), 127–153 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rocha, T., Paredes, S., De Carvalho, P., Henriques, J.: Prediction of acute hypotensive episodes by means of neural network multi-models. Comput. Biol. Med. 41(10), 881–890 (2011)CrossRefGoogle Scholar
  16. 16.
    Saeed, M., Lieu, C., Raber, G., Mark, R.G.: MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring. In: Computers in Cardiology, pp. 641–644. IEEE (2002)Google Scholar
  17. 17.
    Stone, P., Veloso, M.: Layered learning. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 369–381. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45164-1_38CrossRefGoogle Scholar
  18. 18.
    Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)CrossRefGoogle Scholar
  19. 19.
    Tsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M., Brotfain, E.: Hypotensive episode prediction in ICUs via observation window splitting. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 472–487. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10997-4_29CrossRefGoogle Scholar
  20. 20.
    Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In: KDD, pp. 359–363 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vitor Cerqueira
    • 1
    • 3
    Email author
  • Luis Torgo
    • 1
    • 2
    • 3
  • Carlos Soares
    • 1
    • 3
  1. 1.University of PortoPortoPortugal
  2. 2.Dalhousie UniversityHalifaxCanada
  3. 3.LIAAD-INESCTECPortoPortugal

Personalised recommendations