Skip to main content

Resampling-Based Framework for Unbiased Estimator of Node Centrality over Large Complex Network

  • Conference paper
  • First Online:
Book cover Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

  • 1669 Accesses

Abstract

We address a problem of efficiently estimating value of a centrality measure for a node in a large network, and propose a sampling-based framework in which only a small number of nodes that are randomly selected are used to estimate the measure. The error estimator we derived is an unbiased estimator of the approximation error defined as the expectation of the difference between the true and the estimated values of the centrality. We experimentally evaluate the fundamental performance of the proposed framework using the closeness and betweenness centralities on six real world networks from different domains, and show that it allows us to estimate the approximation error more tightly and more precisely than the standard error estimator traditionally used based on i.i.d. sampling, i.e., with the confidence level of \(95\%\) for a small number of sampling, say \(20\%\) of the total number of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ameba.jp/.

  2. 2.

    http://www.cosme.net/.

  3. 3.

    https://snap.stanford.edu/.

  4. 4.

    https://mapzen.com/data/metro-extracts/.

  5. 5.

    http://w3.usf.edu/FreeAssociation/.

References

  1. AlGhamdi, Z., Jamour, F., Skiadopoulos, S., Kalnis, P.: A benchmark for betweenness centrality approximation algorithms on large graphs. In: Proceedings of the 29th International Conference on Scientific and Statistical Database Management (2017)

    Google Scholar 

  2. Bonacichi, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987)

    Article  Google Scholar 

  3. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)

    Article  Google Scholar 

  4. Brandes, U., Pich, C.: Centrality estimation in large networks. Int. J. Bifurcat. Chaos 17(7), 303–318 (2007)

    Article  MathSciNet  Google Scholar 

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  6. Chakrabarti, S., et al.: Mining the web’s link structure. IEEE Comput. 32, 60–67 (1999)

    Article  Google Scholar 

  7. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

    Article  MathSciNet  Google Scholar 

  8. Freeman, L.: Centrality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)

    Article  Google Scholar 

  9. Henzinger, M.R., Heydon, A., Mitzenmacher, M., Najork, M.: On near-uniform URL sampling. Int. J. Comput. Telecommun. Network. 33(1–6), 295–308 (2000)

    Google Scholar 

  10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  11. Katz, L.: A new status index derived from sociometric analysis. Sociometry 18, 39–43 (1953)

    MATH  Google Scholar 

  12. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Speeding-up node influence computation for huge social networks. Int. J. Data Sci. Anal. 1, 1–14 (2016)

    Article  Google Scholar 

  13. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  14. Kurant, M., Markopoulou, A., Thiran, P.: Towards unbiased BFS sampling. IEEE J. Sel. Areas Commun. 29(9), 1799–1809 (2011)

    Article  Google Scholar 

  15. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 631–636 (2006)

    Google Scholar 

  16. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Article  Google Scholar 

  17. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based framework for estimating node centrality of large social network. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 228–239. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_20

    Chapter  Google Scholar 

  18. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based gap analysis for detecting nodes with high centrality on large social network. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 135–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18038-0_11

    Chapter  Google Scholar 

  19. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Accelerating computation of distance based centrality measures for spatial networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 376–391. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_24

    Chapter  Google Scholar 

  20. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based predictive simulation framework of stochastic diffusion model for identifying top-k influential nodes. Int. J. Data Sci. Anal (2019, online first)

    Google Scholar 

  21. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  22. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. Data Min. Knowl. Disc. 30(2), 438–475 (2016)

    Article  MathSciNet  Google Scholar 

  23. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

    Article  Google Scholar 

  24. Wandelt, S., Shi, X., Sun, X.: Scalability of betweenness approximation algorithms: an experimental review. IEEE Access 7, 104057–104071 (2019)

    Article  Google Scholar 

  25. Zhuge, H., Zhang, J.: Topological centrality and its e-Science applications. J. Am. Soc. Inf. Sci. Technol. 61, 1824–1841 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by JSPS Grant-in-Aid for Scientific Research (C) (No. 17K00314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouzou Ohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saito, K., Ohara, K., Kimura, M., Motoda, H. (2019). Resampling-Based Framework for Unbiased Estimator of Node Centrality over Large Complex Network. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics