Advertisement

Parameter-Less Tensor Co-clustering

  • Elena BattagliaEmail author
  • Ruggero G. Pensa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11828)

Abstract

Tensors co-clustering has been proven useful in many applications, due to its ability of coping with high-dimensional data and sparsity. However, setting up a co-clustering algorithm properly requires the specification of the desired number of clusters for each mode as input parameters. This choice is already difficult in relatively easy settings, like flat clustering on data matrices, but on tensors it could be even more frustrating. To face this issue, we propose a tensor co-clustering algorithm that does not require the number of desired co-clusters as input, as it optimizes an objective function based on a measure of association across discrete random variables (called Goodman and Kruskal’s \(\tau \)) that is not affected by their cardinality. The effectiveness of our algorithm is shown on both synthetic and real-world datasets, also in comparison with state-of-the-art co-clustering methods based on tensor factorization.

Keywords

Clustering Higher-order data Unsupervised learning 

References

  1. 1.
    Araujo, M., Ribeiro, P.M.P., Faloutsos, C.: Tensorcast: forecasting time-evolving networks with contextual information. In: Proceedings of IJCAI 2018, pp. 5199–5203 (2018)Google Scholar
  2. 2.
    Banerjee, A., Basu, S., Merugu, S.: Multi-way clustering on relation graphs. In: Proceedings of SIAM SDM 2007, pp. 145–156 (2007)Google Scholar
  3. 3.
    Cao, X., Wei, X., Han, Y., Lin, D.: Robust face clustering via tensor decomposition. IEEE Trans. Cybern. 45(11), 2546–2557 (2015)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic cross-associations. In: Proceedings of ACM SIGKDD 2004, pp. 79–88 (2004)Google Scholar
  5. 5.
    Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum-squared residue co-clustering of gene expression data. In: Proceedings of SIAM SDM 2004, pp. 114–125 (2004)Google Scholar
  6. 6.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of ACM SIGKDD 2003, pp. 89–98 (2003)Google Scholar
  7. 7.
    Ding, C.H.Q., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of ACM SIGKDD 2006, pp. 126–135 (2006)Google Scholar
  8. 8.
    Ermis, B., Acar, E., Cemgil, A.T.: Link prediction in heterogeneous data via generalized coupled tensor factorization. Data Min. Knowl. Discov. 29(1), 203–236 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goodman, L.A., Kruskal, W.H.: Measures of association for cross classification. J. Am. Stat. Assoc. 49, 732–764 (1954)zbMATHGoogle Scholar
  10. 10.
    Harshman, R.A.: Foundation of the parafac procedure: models and conditions for an" explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)Google Scholar
  11. 11.
    He, J., Li, X., Liao, L., Wang, M.: Inferring continuous latent preference on transition intervals for next point-of-interest recommendation. In: Proceesings of ECML PKDD 2018, pp. 741–756 (2018)CrossRefGoogle Scholar
  12. 12.
    Hong, M., Jung, J.J.: Multi-sided recommendation based on social tensor factorization. Inf. Sci. 447, 140–156 (2018)CrossRefGoogle Scholar
  13. 13.
    Huang, H., Ding, C.H.Q., Luo, D., Li, T.: Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering. In: Proceedings of the 14th ACM SIGKDD, pp. 327–335 (2008)Google Scholar
  14. 14.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefGoogle Scholar
  15. 15.
    Ienco, D., Robardet, C., Pensa, R.G., Meo, R.: Parameter-less co-clustering for star-structured heterogeneous data. Data Min. Knowl. Discov. 26(2), 217–254 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Papalexakis, E.E., Dogruöz, A.S.: Understanding multilingual social networks in online immigrant communities. In: Proceedings of MWA 2015 (co-located with WWW 2015), pp. 865–870 (2015)Google Scholar
  18. 18.
    Papalexakis, E.E., Sidiropoulos, N.D., Bro, R.: From K-means to higher-way co-clustering: multilinear decomposition with sparse latent factors. IEEE Trans. Signal Process. 61(2), 493–506 (2013)CrossRefGoogle Scholar
  19. 19.
    Pensa, R.G., Ienco, D., Meo, R.: Hierarchical co-clustering: off-line and incremental approaches. Data Min. Knowl. Discov. 28(1), 31–64 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Proceedings DS 2001, pp. 323–335 (2001)CrossRefGoogle Scholar
  21. 21.
    Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: Proceedings of (ICML 2005), pp. 792–799 (2005)Google Scholar
  22. 22.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wu, T., Benson, A.R., Gleich, D.F.: General tensor spectral co-clustering for higher-order data. In: Proceedings of NIPS 2016, 2559–2567 (2016)Google Scholar
  25. 25.
    Yu, K., He, L., Yu, P.S., Zhang, W., Liu, Y.: Coupled tensor decomposition for user clustering in mobile internet traffic interaction pattern. IEEE Access 7, 18113–18124 (2019)CrossRefGoogle Scholar
  26. 26.
    Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, Z., Li, T., Ding, C.H.Q.: Non-negative tri-factor tensor decomposition with applications. Knowl. Inf. Syst. 34(2), 243–265 (2013)CrossRefGoogle Scholar
  28. 28.
    Zhou, Q., Xu, G., Zong, Y.: Web co-clustering of usage network using tensor decomposition. In: Proceedings of ECBS 2009, pp. 311–314 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TurinTurinItaly

Personalised recommendations