Skip to main content

Designing Novel Photocatalysts for Disinfection of Multidrug-Resistant Waterborne Bacteria

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Abstract

Water is the main source of sustaining life. It is an indispensable need for flora and fauna alike. However, water is often contaminated by multidrug-resistant bacteria and various other contaminants. Disinfection methods like ozonation and chlorination fail to curtail these menace, often generating harmful by-products in this process. Photocatalysis, a subsidiary of advanced oxidation processes might have an important role to play in water decontamination. They are effective, do not generate by-products, and provide complete inactivation against these MDR strains and pollutants. The already existing photocatalysts like Titanium Dioxide and Zinc Oxide are being depleted to their core. So, newer and novel photocatalysts need to be developed with a more proficient, eco-friendly and biocompatible approach. This discussion aims to have a closer look at the existing disinfection techniques and the emerging players in the field of photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCD:

Photocatalytic Disinfection

NC:

Nanocomposites

MDR:

Multidrug-resistant

ARG:

Antibiotic-resistance genes

GO:

Graphene Oxide

SODIS:

Solar Disinfection

LED:

Light Emitting Diode

DNA:

Deoxyribonucleic Acid

ROS:

Reactive Oxygen Species

VB:

Valence Bond

CB:

Conduction Band

RNA:

Ribonucleic Acid

UV:

Ultra Violet

References

  • Adhikari S, Banerjee A, Eswar NK, Sarkar D, Madras G (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv 5(63):51067–51077

    Article  CAS  Google Scholar 

  • Agus E, Voutchkov N, Sedlak DL (2009) Disinfection by-products and their potential impact on the quality of water produced by desalination systems: a literature review. Desalination 237(1–3):214–237

    Article  CAS  Google Scholar 

  • Akhavan O, Azimirad R (2009) Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A 369(1–2):77–82

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860

    Article  CAS  Google Scholar 

  • Alfaro-Moreno E, Nawrot TS, Nemmar A, Nemery B (2007) Particulate matter in the environment: pulmonary and cardiovascular effects. Curr Opin Pulm Med 13(2):98–106

    Google Scholar 

  • AramendĂ­a M, Borau V, Colmenares J, Marinas A, Marinas J, NavĂ­o J, Urbano F (2008) Modification of the photocatalytic activity of Pd/TiO2 and Zn/TiO2 systems through different oxidative and reductive calcination treatments. Appl Catal B 80(1–2):88–97

    Article  CAS  Google Scholar 

  • Artale MA, Augugliaro V, Drioli E, Golemme G, Grande C, Loddo V, Molinari R, Palmisano L, Schiavello M (2001) Preparation and characterisation of membranes with entrapped TiO2 and preliminary photocatalytic tests. Annali di chimica 91(3–4):127–136

    Google Scholar 

  • Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198(1–3):229–238

    Article  CAS  Google Scholar 

  • Bandara J, Pulgarin C, Peringer P, Kiwi J (1997) Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. J Photochem Photobiol A Chem 111(1–3):253–263

    Google Scholar 

  • Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol 8:2603

    Article  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862

    Google Scholar 

  • Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. Dev Clay Sci 1:1–18

    Google Scholar 

  • Beydoun D, Amal R, Low GK-C, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104(18):4387–4396

    Article  CAS  Google Scholar 

  • Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Sci Technol 50(2):702–706

    Article  CAS  Google Scholar 

  • Bradley BR, Daigger GT, Rubin R, Tchobanoglous G (2002) Evaluation of onsite wastewater treatment technologies using sustainable development criteria. Clean Technol Environ Policy 4(2):87–99

    Article  CAS  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374

    Article  CAS  Google Scholar 

  • Byrne J, Eggins B, Brown N, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B 17(1–2):25–36

    Article  CAS  Google Scholar 

  • CarrĂ© G, Hamon E, Ennahar S, Estner M, Lett M-C, Horvatovich P, Gies J-P, Keller V, Keller N, Andre P (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80(8):2573–2581

    Article  CAS  Google Scholar 

  • Chaurasia AK, Thorat ND, Tandon A, Kim J-H, Park SH, Kim KK (2016) Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep 6:33662

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Yoon J (2003) Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine. Environ Sci Technol 37(10):2134–2138

    Google Scholar 

  • Choi YI, Lee S, Kim SK, Kim Y-I, Cho DW, Khan MM, Sohn Y (2016) Fabrication of ZnO, ZnS, Ag–ZnS, and Au–ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis. J Alloy Compd 675:46–56

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Google Scholar 

  • Chong MN, Jin B, Saint CP (2011) Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chem Eng J 171(1):16–23

    Article  CAS  Google Scholar 

  • Das S, Ghosh S, Misra A, Tamhankar A, Mishra A, Lundborg C, Tripathy S (2018b) Sunlight assisted photocatalytic degradation of ciprofloxacin in water using Fe doped ZnO nanoparticles for potential public health applications. Int J Environ Res Public Health 15:2440

    Article  CAS  Google Scholar 

  • Das B, Khan MI, Jayabalan R, Behera SK, Yun S-I, Tripathy SK, Mishra A (2016) Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei. Sci Rep 6:36403

    Article  CAS  Google Scholar 

  • Das S, Ghosh S, Misra A, Tamhankar A, Mishra A, Lundborg C, Tripathy S (2018) Sunlight assisted photocatalytic degradation of ciprofloxacin in water using Fe doped ZnO nanoparticles for potential public health applications. Int J Environ Res Public Health 15(11):2440

    Google Scholar 

  • Das S, Sinha S, Das B, Jayabalan R, Suar M, Mishra A, Tamhankar AJ, Lundborg CS, Tripathy SK (2017) Disinfection of multidrug resistant Escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Sci Rep 7(1):104

    Google Scholar 

  • Das S, Sinha S, Suar M, Yun S-I, Mishra A, Tripathy SK (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ ZnO core–shell structure nanocomposites. J Photochem Photobiol B 142:68–76

    Article  CAS  Google Scholar 

  • Delgado-Gardea M, Tamez-Guerra P, Gomez-Flores R, Zavala-DĂ­az de la Serna F, Eroza-de la Vega G, NevĂĄrez-MoorillĂłn G, PĂ©rez-Recoder M, SĂĄnchez-RamĂ­rez B, GonzĂĄlez-Horta M, Infante-RamĂ­rez R (2016) Multidrug-resistant bacteria isolated from surface water in Bassaseachic Falls National Park, Mexico. Int J Environ Res Public Health 13(6):597

    Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605

    Google Scholar 

  • Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Iyer RV, Sundblad-Tonderski K, StĂ„lsby-Lundborg C (2010) Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10(1):414

    Google Scholar 

  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418(1–2):87–90

    Google Scholar 

  • Feilizadeh M, Mul G, Vossoughi M (2015) E. coli inactivation by visible light irradiation using a Fe–Cd/TiO2 photocatalyst: statistical analysis and optimization of operating parameters. Appl Catal B Environ 168:441–447

    Google Scholar 

  • FernĂĄndez Silva FV. Evaluation of virulence and new experimental therapeutic strategies for emerging and uncommon medically important fungal pathogens, Universitat Rovira i Virgili

    Google Scholar 

  • FernĂĄndez-Silva F, Capilla J, Mayayo E, Sutton DA, HernĂĄndez P, Guarro J (2013) Evaluation of the efficacies of Amphotericin B, Posaconazole, Voriconazole, and Anidulafungin in a murine disseminated infection by the emerging opportunistic Fungus Sarocladium (Acremonium). Antimicrob Agents Chem 57(12):6265–6269

    Google Scholar 

  • Francy DS, Stelzer EA, Bushon RN, Brady AM, Williston AG, Riddell KR, Borchardt MA, Spencer SK, Gellner TM (2012) Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res 46(13):4164–4178

    Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9(1):1–12

    Article  CAS  Google Scholar 

  • Greer A, Ng V, Fisman D (2008) Climate change and infectious diseases in North America: the road ahead. CMAJ 178(6):715–722

    Google Scholar 

  • Guo M-T, Yuan Q-B, Yang J (2013) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93(11):2864–2868

    Article  CAS  Google Scholar 

  • Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6(1):35

    Google Scholar 

  • Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@ TiO2 core—shell composite clusters under UV—irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  • Hrenovic J, Ivankovic T, Tibljas D (2009) The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J Hazard Mater 166(2–3):1377–1382

    Article  CAS  Google Scholar 

  • Huang J-J, Hu H-Y, Wu Y-H, Wei B, Lu Y (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90(8):2247–2253

    Article  CAS  Google Scholar 

  • Huang J, Ho W, Wang X (2014) Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun 50(33):4338–4340

    Article  CAS  Google Scholar 

  • Huang S, Xu Y, Xie M, Liu Q, Xu H, Zhao Y, He M, Li H (2017) A Z-scheme magnetic recyclable Ag/AgBr@ CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Adv 7(49):30845–30854

    Article  CAS  Google Scholar 

  • Huang Y-Y, Choi H, Kushida Y, Bhayana B, Wang Y, Hamblin MR (2016) Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide. Antimicrob Agents Chemother 60(9):5445–5453

    Google Scholar 

  • Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Publications

    Google Scholar 

  • Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nanotechnology in the green economy. Environ Health 13(1):78

    Article  CAS  Google Scholar 

  • Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    Google Scholar 

  • Kafle B, Acharya S, Thapa S, Poudel S (2016) Structural and optical properties of Fe-doped ZnO transparent thin films. Ceram Int 42(1):1133–1139

    Article  CAS  Google Scholar 

  • Kang J-K, Lee C-G, Park J-A, Kim S-B, Choi N-C, Park S-J (2013) Adhesion of bacteria to pyrophyllite clay in aqueous solution. Environ Technol 34(6):703–710

    Google Scholar 

  • Kim SH, Kwak S-Y, Sohn B-H, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165

    Article  CAS  Google Scholar 

  • Kitajima M, Tohya Y, Matsubara K, Haramoto E, Utagawa E, Katayama H (2010) Chlorine inactivation of human norovirus, murine norovirus and poliovirus in drinking water. Lett Appl Microbiol 51(1):119–121

    Google Scholar 

  • Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21(10):4631–4641

    Article  CAS  Google Scholar 

  • Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S (2008) Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24(2):547–550

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14

    Article  CAS  Google Scholar 

  • Labro M-T (2012) Immunomodulatory effects of antimicrobial agents. Part II: antiparasitic and antifungal agents. Expert Rev Anti-infect Ther 10(3):341–357

    Google Scholar 

  • Lapena L, Cerezo M, Garcia-Augustin P (1995) Possible reuse of treated municipal wastewater for Citrus spp. plant irrigation. Bull Environ Contam Toxicol 55(5):697–703

    Google Scholar 

  • Lei J, Chen Y, Shen F, Wang L, Liu Y, Zhang J (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloy Compd 631:328–334

    Article  CAS  Google Scholar 

  • Levy K, Woster AP, Goldstein RS, Carlton EJ (2016) Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ Sci Technol 50(10):4905–4922

    Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Google Scholar 

  • Li J, Shao B, Shen J, Wang S, Wu Y (2013) Occurrence of chloramphenicol-resistance genes as environmental pollutants from swine feedlots. Environ Sci Technol 47(6):2892–2897

    Google Scholar 

  • Lien L, Lan P, Chuc N, Hoa N, Nhung P, Thoa N, Diwan V, Tamhankar A, StĂ„lsby Lundborg C (2017) Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater in Vietnam. Int J Environ Res Public Health 14(7):699

    Google Scholar 

  • Liu J, Zhang Y, Lu L, Wu G, Chen W (2012) Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem Commun 48(70):8826–8828

    Article  CAS  Google Scholar 

  • Liu L, Bai H, Liu J, Sun DD (2013) Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater 261:214–223

    Google Scholar 

  • Longo G, Kasas S (2014) Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):230–244

    Article  CAS  Google Scholar 

  • Luan Y, Jing L, Wu J, Xie M, Feng Y (2014) Long-lived photogenerated charge carriers of 0 0 1-facet-exposed TiO2 with enhanced thermal stability as an efficient photocatalyst. Appl Catal B 147:29–34

    Article  CAS  Google Scholar 

  • Ma S, Zhan S, Jia Y, Zhou Q (2015) Superior antibacterial activity of Fe3O4–TiO2 nanosheets under solar light. ACS Appl Mater Interfaces 7(39):21875–21883

    Google Scholar 

  • Malato S, FernĂĄndez-Ibåñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  • Mamane H, Horovitz I, Lozzi L, Di Camillo D, Avisar D (2014) The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol–gel thin films. Chem Eng J 257:159–169

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214

    Google Scholar 

  • McGuinness NB, John H, Kavitha MK, Banerjee S, Dionysiou DD, Pillai SC (2016) Self-cleaning photocatalytic activity: materials and applications. Photocatalysis 204–235

    Google Scholar 

  • McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46(24):13393–13400

    Google Scholar 

  • Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1–4):133–139

    Article  CAS  Google Scholar 

  • Misra AJ, Das S, Rahman AH, Das B, Jayabalan R, Behera SK, Suar M, Tamhankar AJ, Mishra A, Lundborg CS (2018) Doped ZnO nanoparticles impregnated on Kaolinite (Clay): a reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J Colloid Interface Sci 530:610–623

    Google Scholar 

  • Morales-Guio CG, Mayer MT, Yella A, Tilley SD, GrĂ€tzel M, Hu X (2015) An optically transparent iron nickel oxide catalyst for solar water splitting. J Am Chem Soc 137(31):9927–9936

    Article  CAS  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2):681–693

    Google Scholar 

  • Muter O (2014) Assessment of bioremediation strategies for explosives-contaminated sites. Biological remediation of explosive residues. Springer, pp 113–148

    Google Scholar 

  • Nagarajan K, Marimuthu SK, Palanisamy S, Subbiah L (2018) Peptide therapeutics versus superbugs: highlight on current research and advancements. Int J Pept Res Ther 24(1):19–33

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    Article  CAS  Google Scholar 

  • Nalwa HS (2014) A special issue on reviews in nanomedicine, drug delivery and vaccine development. J Biomed Nanotechnol 10(9):1635–1640

    Google Scholar 

  • ÖncĂŒ NB, Menceloğlu YZ, Balcıoğlu IA (2011) Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. J Adv Oxid Technol 14(2):196–203

    Google Scholar 

  • Ong W-J, Gui MM, Chai S-P, Mohamed AR (2013) Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv 3(14):4505–4509

    Article  CAS  Google Scholar 

  • Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770

    Article  CAS  Google Scholar 

  • Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    Google Scholar 

  • Organization WH (2004) Guidelines for drinking-water quality. World Health Organization

    Google Scholar 

  • Organization WH (2014) Antimicrobial resistance: global report on surveillance. World Health Organization

    Google Scholar 

  • Otto CC, Haydel SE (2013) Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE 8(5):e64068

    Article  CAS  Google Scholar 

  • Padmanabhan P, Sreekumar K, Thiyagarajan T, Satpute R, Bhanumurthy K, Sengupta P, Dey G, Warrier K (2006) Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80(11–12):1252–1255

    Article  CAS  Google Scholar 

  • Parida S, Axelsson‐Robertson R, Rao M, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M (2015) Totally drug‐resistant tuberculosis and adjunct therapies. J Intern Med 277(4):388–405

    Google Scholar 

  • Pattan G, Kaul G (2014) Health hazards associated with nanomaterials. Toxicol Ind Health 30(6):499–519

    Google Scholar 

  • Peng X, Ng TW, Huang G, Wang W, An T, Wong PK (2017) Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite. Chemosphere 166:521–527

    Article  CAS  Google Scholar 

  • Praneeth N, Paria S. Clay-semiconductor nanocomposites for photocatalytic applications. In: Clay minerals: properties, occurrence and uses

    Google Scholar 

  • Praneeth N, Paria S (2017) Clay-semiconductor nanocomposites for photocatalytic applications. Clay Miner Prop Occur Uses 144–184

    Google Scholar 

  • Prasad K, Lekshmi G, Ostrikov K, Lussini V, Blinco J, Mohandas M, Vasilev K, Bottle S, Bazaka K, Ostrikov K (2017) Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci Rep 7(1):1591

    Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Global Health 109(7): 309–318

    Google Scholar 

  • Qing Li Q, Loganath A, Seng Chong Y, Tan J, Philip Obbard J (2006) Persistent organic pollutants and adverse health effects in humans. J Toxicol Environ Health Part A 69(21):1987–2005

    Article  CAS  Google Scholar 

  • Rahman AH, Misra AJ, Das S, Das B, Jayabalan R, Suar M, Mishra A, Tamhankar AJ, Lundborg CS, Tripathy SK (2018) Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles. Chem Eng J 336:476–488

    Article  CAS  Google Scholar 

  • Rahman S, Khan M, Akib S, Din NBC, Biswas S, Shirazi S (2014) Sustainability of rainwater harvesting system in terms of water quality. Sci World J 2014

    Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27(1):1–35

    Article  CAS  Google Scholar 

  • Regmi C, Joshi B, Ray SK, Gyawali G, Pandey RP (2018a) Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front Chem 6:33

    Article  CAS  Google Scholar 

  • Regmi YN, Mann JK, McBride JR, Tao J, Barnes CE, LabbĂ© N, Chmely SC (2018b) Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catal Today 302:190–195

    Article  CAS  Google Scholar 

  • Rennecker JL, Mariñas BJ, Owens JH, Rice EW (1999) Inactivation of Cryptosporidium parvum oocysts with ozone. Water Res 33(11):2481–2488

    Article  CAS  Google Scholar 

  • Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B 144:369–378

    Article  CAS  Google Scholar 

  • Ryu S, Kim BI, Lim J-S, Tan CS, Chun BC (2017) One Health perspectives on emerging public health threats. J Prev Med Public Health 50(6):411

    Article  Google Scholar 

  • Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. In: Nanocomposites for visible light-induced photocatalysis. Springer, pp 19–40

    Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Article  Google Scholar 

  • Sciacca F, Rengifo-Herrera JA, WĂ©thĂ© J, Pulgarin C (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere 78(9):1186–1191

    Article  CAS  Google Scholar 

  • Selma MV, BeltrĂĄn D, Allende A, ChacĂłn-Vera E, Gil MI (2007) Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiol 24(5):492–499

    Article  CAS  Google Scholar 

  • Shan W, Hu Y, Bai Z, Zheng M, Wei C (2016) In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl Catal B 188:1–12

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nanosci Technol Collec Rev Nat J (World Scientific) 337–346

    Google Scholar 

  • Siddiquey IA, Furusawa T, Sato M, Honda K, Suzuki N (2008) Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigm 76(3):754–759

    Article  CAS  Google Scholar 

  • Soni S, Dave G, Henderson M, Gibaud A (2013) Visible light induced cell damage of Gram positive bacteria by N-doped TiO2 mesoporous thin films. Thin Solid Films 531:559–565

    Article  CAS  Google Scholar 

  • Sturm R (2015) A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs. Ann Transl Med 3(19)

    Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014

    Google Scholar 

  • Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@ SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5(6):1456–1462

    Article  CAS  Google Scholar 

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174

    Article  CAS  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277

    Google Scholar 

  • Viessman W, Hammer MJ, Perez EM, Chadik PA (1998) Water supply and pollution control

    Google Scholar 

  • Von Gunten U (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487

    Article  CAS  Google Scholar 

  • Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B 176:44–52

    Article  CAS  Google Scholar 

  • Wang L, Mao J, Zhang G-H, Tu M-J (2007) Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. World J Gastroenterol WJG 13(29):4011

    Google Scholar 

  • Wang L, Pan Y, Li J, Qin H (2008) Magnetic properties related to thermal treatment of pyrite. Sci China Ser D Earth Sci 51(8):1144–1153

    Article  CAS  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10(2):135–138

    Article  Google Scholar 

  • Weaver CE, Pollard LD (2011) The chemistry of clay minerals. Elsevier

    Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS nano 2(7):1487–1491

    Google Scholar 

  • Xia D, Ng TW, An T, Li G, Li Y, Yip HY, Zhao H, Lu A, Wong P-K (2013) A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite. Environ Sci Technol 47(19):11166–11173

    Google Scholar 

  • Yan L, Feng M, Liu J, Wang L, Wang Z (2016) Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. Ecotoxicol Environ Saf 125:61–71

    Google Scholar 

  • Yang K, LeJeune J, Alsdorf D, Lu B, Shum C, Liang S (2012) Global distribution of outbreaks of water-associated infectious diseases. PLoS Negl Trop Dis 6(2):e1483

    Google Scholar 

  • Yaya A, Agyei-Tuffour B, Dodoo-Arhin D, Nyankson E, Annan E, Konadu D, Sinayobye E, Baryeh E, Ewels C (2012) Layered nanomaterials-a review. Global J Eng Des Technol 2:32–41

    Google Scholar 

  • Yin L, Yuan Y-P, Cao S-W, Zhang Z, Xue C (2014) Enhanced visible-light-driven photocatalytic hydrogen generation over gC3N4 through loading the noble metal-free NiS2 cocatalyst. RSC Adv 4(12):6127–6132

    Article  CAS  Google Scholar 

  • Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39(4):1175–1179

    Google Scholar 

  • Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93

    Article  CAS  Google Scholar 

  • Zhang L, Yang H, Xie X, Zhang F, Li L (2009) Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. J Alloy Compd 473(1–2):65–70

    CAS  Google Scholar 

  • Zhang N, Liu S, Xu Y-J (2012) Recent progress on metal core@ semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4(7):2227–2238

    Article  CAS  Google Scholar 

  • Zhang X, Dong S, Zhou X, Yan L, Chen G, Dong S, Zhou D (2015) A facile one-pot synthesis of Er–Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Mater Lett 143:312–314

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu Y, Yu J, Yang D, Ng TW, Wong PK, Jimmy CY (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5(14):6307–6310

    Article  CAS  Google Scholar 

  • Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B 152:46–50

    Article  CAS  Google Scholar 

  • Zhao J, Deng B, Lv M, Li J, Zhang Y, Jiang H, Peng C, Li J, Shi J, Huang Q (2013) Graphene oxide‐based antibacterial cotton fabrics. Adv Healthc Mater 2(9):1259–1266

    Google Scholar 

  • Zhong D, Ma W, Jiang X, Yuan Y, Yuan Y, Wang Z, Fang T, Huang W (2017) Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review. In: IOP conference series: earth and environmental science. IOP Publishing

    Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43(3):278–284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj K. Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. et al. (2020). Designing Novel Photocatalysts for Disinfection of Multidrug-Resistant Waterborne Bacteria. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics