Skip to main content

Nanoporous Polymeric Membranes for Hydrogen Separation

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 917 Accesses

Abstract

In today’s world, it becomes a necessity to develop an eco-friendly and renewable energy source to overcome the pollution and energy requirement problem. Among all renewable energy sources, hydrogen has been found a more attractive energy carrier due to its high efficiency and cost-effective sustainable energy source. For practical use of H2 as an energy source, it should be separated from a mixture of gases by using hydrogen-selective membranes. In the present chapter, we have reviewed the membrane-based gas separation process. Furthermore, we have summarized the H2 gas separation data based on the different membranes and approaches to prepare hydrogen-selective membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Mufachi NA, Rees NV, Steinberger-Wilkens R (2015) Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 47:540–551. https://doi.org/10.1016/j.rser.2015.03.026

    Article  CAS  Google Scholar 

  2. Apel PY, Blonskaya IV, Dmitriev SN et al (2006) Structure of polycarbonate track-etch membranes: origin of the “paradoxical” pore shape. J Memb Sci 282:393–400. https://doi.org/10.1016/j.memsci.2006.05.045

    Article  CAS  Google Scholar 

  3. Babu DJ, Lange M, Cherkashinin G et al (2013) Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon NY 61:616–623. https://doi.org/10.1016/j.carbon.2013.05.045

    Article  CAS  Google Scholar 

  4. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121

    Article  CAS  Google Scholar 

  5. Bakhtiari O, Sadeghi N (2015) Mixed matrix membranes’ gas separation performance prediction using an analytical model. Chem Eng Res Des 93:710–719. https://doi.org/10.1016/j.cherd.2014.06.013

    Article  CAS  Google Scholar 

  6. Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:41716

    Article  CAS  Google Scholar 

  7. Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951

    Article  CAS  Google Scholar 

  8. Bespalko Y, Sadykov V, Eremeev N et al (2018) Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes. Compos Struct 202:1263–1274. https://doi.org/10.1016/j.compstruct.2018.06.004

    Article  Google Scholar 

  9. Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062

    Article  CAS  Google Scholar 

  10. Carreon M, Dahe G, Feng J, Venna SR (2016) Mixed matrix membranes for gas separation applications. In: Membranes for gas separations. World Scientific, pp 1–57

    Google Scholar 

  11. Castel C, Favre E (2018) Membrane separations and energy efficiency. J Memb Sci 548:345–357. https://doi.org/10.1016/j.memsci.2017.11.035

    Article  CAS  Google Scholar 

  12. Chakarvarti SK (2009) Track-etch membranes enabled nano-/microtechnology: a review. Radiat Meas 44:1085–1092. https://doi.org/10.1016/j.radmeas.2009.10.028

    Article  CAS  Google Scholar 

  13. Chen Y-H, Chen C-Y, Lee S-C (2011) Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int J Hydrog Energy 36:6957–6969. https://doi.org/10.1016/J.IJHYDENE.2011.03.063

    Article  CAS  Google Scholar 

  14. Chen Y, Wei Y, Zhuang L et al (2018) Effect of Pt layer on the hydrogen permeation property of La5.5W0.45Nb0.15Mo0.4O11.25-Δmembrane. J Memb Sci 552:61–67. https://doi.org/10.1016/j.memsci.2018.01.068

    Article  CAS  Google Scholar 

  15. Cheng YS, Peña MA, Fierro JL et al (2002) Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. J Memb Sci 204:329–340. https://doi.org/10.1016/S0376-7388(02)00059-5

    Article  CAS  Google Scholar 

  16. Damle AS, Gangwal SK, Venkataraman VK (1994) Carbon membranes for gas separation: developmental studies. Gas Sep Purif 8:137–147. https://doi.org/10.1016/0950-4214(94)80024-3

    Article  CAS  Google Scholar 

  17. David E, Kopac J (2011) Devlopment of palladium/ceramic membranes for hydrogen separation. Int J Hydrog Energy 36:4498–4506. https://doi.org/10.1016/j.ijhydene.2010.12.032

    Article  CAS  Google Scholar 

  18. De Falco M, Salladini A, Palo E, Iaquaniello G (2011) Reformer and membrane modules (RMM) for methane conversion powered by a nuclear reactor. In: Nuclear power-deployment, operation and sustainability. InTech

    Google Scholar 

  19. de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Memb Sci 447:395–402

    Article  Google Scholar 

  20. Denny Kamaruddin H, Koros WJ (1997) Some observations about the application of Fick’s first law for membrane separation of multicomponent mixtures. J Memb Sci 135:147–159. https://doi.org/10.1016/S0376-7388(97)00142-7

    Article  Google Scholar 

  21. Dicks AL (1996) Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J Power Sources 61:113–124. https://doi.org/10.1016/S0378-7753(96)02347-6

    Article  CAS  Google Scholar 

  22. Dolan MD (2010) Non-Pd BCC alloy membranes for industrial hydrogen separation. J Memb Sci 362:12–28. https://doi.org/10.1016/j.memsci.2010.06.068

    Article  CAS  Google Scholar 

  23. Dolan MD, Dave NC, Ilyushechkin AY et al (2006) Composition and operation of hydrogen-selective amorphous alloy membranes. J Memb Sci 285:30–55. https://doi.org/10.1016/j.memsci.2006.09.014

    Article  CAS  Google Scholar 

  24. Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322

    Article  CAS  Google Scholar 

  25. Ebrahimi S, Mollaiy-Berneti S, Asadi H et al (2016) PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chem Eng Res Des 109:647–656. https://doi.org/10.1016/j.cherd.2016.03.009

    Article  CAS  Google Scholar 

  26. Fasolin S, Barison S, Boldrini S et al (2018) Hydrogen separation by thin vanadium-based multi-layered membranes. Int J Hydrog Energy 43:3235–3243. https://doi.org/10.1016/j.ijhydene.2017.12.148

    Article  CAS  Google Scholar 

  27. Gallucci F, Fernandez E, Corengia P, van Sint AM (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    Article  CAS  Google Scholar 

  28. Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930

    Article  CAS  Google Scholar 

  29. Ghasemzadeh K, Sadati Tilebon SM, Basile A (2017) Chapter 10—Silica membranes application for hydrogen separation. In: Basile A, Ghasemzadeh K (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 243–264

    Google Scholar 

  30. Gómez Álvarez-Arenas TE, Apel PY, Orelovitch OL, Muñoz M (2009) New ultrasonic technique for the study of the pore shape of track-etched pores in polymer films. Radiat Meas 44:1114–1118. https://doi.org/10.1016/j.radmeas.2009.09.002

    Article  CAS  Google Scholar 

  31. Haider S, Lindbråthen A, Lie JA, Hägg M-B (2018) Regenerated cellulose based carbon membranes for CO2 separation: durability and aging under miscellaneous environments. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.10.037

    Article  Google Scholar 

  32. Hamm JBS, Ambrosi A, Griebeler JG et al (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrog Energy 42:24830–24845. https://doi.org/10.1016/J.IJHYDENE.2017.08.071

    Article  CAS  Google Scholar 

  33. Hashim SS, Somalu MR, Loh KS et al (2018) Perovskite-based proton conducting membranes for hydrogen separation: a review. Int J Hydrog Energy 43:15281–15305. https://doi.org/10.1016/j.ijhydene.2018.06.045

    Article  CAS  Google Scholar 

  34. Hatlevik Ø, Gade SK, Keeling MK et al (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64

    Article  CAS  Google Scholar 

  35. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  36. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603

    Article  CAS  Google Scholar 

  37. Isfahani SNR, Sedaghat A (2016) A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and CO2 capture. Int J Hydrog Energy 41:9490–9499. https://doi.org/10.1016/j.ijhydene.2016.04.065

    Article  CAS  Google Scholar 

  38. Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Memb Sci 193:1–18. https://doi.org/10.1016/S0376-7388(01)00510-5

    Article  CAS  Google Scholar 

  39. Ismail AF, Rana D, Matsuura T, Foley HC (2011) Carbon-based membranes for separation processes, pp 17–27. https://doi.org/10.1007/978-0-387-78991-0

  40. Javaid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112:219–226. https://doi.org/10.1016/j.cej.2005.07.010

    Article  CAS  Google Scholar 

  41. Jones CW, Koros WJ (1994) Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon NY 32:1419–1425. https://doi.org/10.1016/0008-6223(94)90135-X

    Article  CAS  Google Scholar 

  42. Jose AJ, Kappen J, Alagar M (2018) 2—Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 21–35

    Google Scholar 

  43. Jue ML, Lively RP (2015) Targeted gas separations through polymer membrane functionalization. React Funct Polym 86:88–110. https://doi.org/10.1016/j.reactfunctpolym.2014.09.002

    Article  CAS  Google Scholar 

  44. Khatib SJ, Oyama ST (2013) Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Sep Purif Technol 111:20–42. https://doi.org/10.1016/j.seppur.2013.03.032

    Article  CAS  Google Scholar 

  45. Kholmanov I, Kim J, Ou E et al (2015) Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707. https://doi.org/10.1021/acsnano.5b02917

    Article  CAS  Google Scholar 

  46. Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Memb Sci 190:179–193

    Article  CAS  Google Scholar 

  47. Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37:447–467. https://doi.org/10.1016/S1872-2067(15)61038-5

    Article  CAS  Google Scholar 

  48. Kosinov N, Gascon J, Kapteijn F, Hensen EJM (2016) Recent developments in zeolite membranes for gas separation. J Memb Sci 499:65–79. https://doi.org/10.1016/j.memsci.2015.10.049

    Article  CAS  Google Scholar 

  49. Kumar R, Saraswat VK, Kumar M et al (2017) Hydrogen gas separation with controlled selectivity via efficient and cost effective block copolymer coated PET membranes. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2017.06.113

    Article  Google Scholar 

  50. Kumar S, Srivastava S, Agrawal S et al (2011) Effect of electric field alignment of MWCNT in PMMA matrix for hydrogen gas purification. AIP Conf Proc 1349:1061–1062. https://doi.org/10.1063/1.3606228

    Article  CAS  Google Scholar 

  51. Kuwahara Y, Morita M, Nagami T, et al (2009) Functionalization of a polymer using nanoparticles immobilized in supercritical carbon dioxide. Jpn J Appl Phys 48:06FF13

    Google Scholar 

  52. Li B, Wen H-M, Yu Y et al (2018) Nanospace within metal–organic frameworks for gas storage and separation. Mater Today Nano 2:21–49. https://doi.org/10.1016/j.mtnano.2018.09.003

    Article  Google Scholar 

  53. Li L, Song C, Jiang D, Wang T (2017) Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes. Sep Purif Technol 188:73–80. https://doi.org/10.1016/j.seppur.2017.07.019

    Article  CAS  Google Scholar 

  54. Lin R-B, Xiang S, Xing H et al (2019) Exploration of porous metal–organic frameworks for gas separation and purification. Coord Chem Rev 378:87–103. https://doi.org/10.1016/j.ccr.2017.09.027

    Article  CAS  Google Scholar 

  55. Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189–7193

    Article  CAS  Google Scholar 

  56. Liu D, Li X, Geng H et al (2018) Development of Nb35Mo5Ti30Ni30alloy membrane for hydrogen separation applications. J Memb Sci 553:171–179. https://doi.org/10.1016/j.memsci.2018.02.052

    Article  CAS  Google Scholar 

  57. Liu J, Wei J (2014) Knudsen diffusion in channels and networks. Chem Eng Sci 111:1–14. https://doi.org/10.1016/j.ces.2014.01.014

    Article  CAS  Google Scholar 

  58. Liu Q, Gupta KM, Xu Q et al (2019) Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Sep Purif Technol 209:419–425. https://doi.org/10.1016/j.seppur.2018.07.044

    Article  CAS  Google Scholar 

  59. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  60. Ma X, Swaidan R, Teng B et al (2013) Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon NY 62:88–96. https://doi.org/10.1016/j.carbon.2013.05.057

    Article  CAS  Google Scholar 

  61. Malzbender J (2016) Mechanical aspects of ceramic membrane materials. Ceram Int 42:7899–7911. https://doi.org/10.1016/j.ceramint.2016.02.136

    Article  CAS  Google Scholar 

  62. McCool BA, DeSisto WJ (2005) Amino-functionalized silica membranes for enhanced carbon dioxide permeation. Adv Funct Mater 15:1635–1640

    Article  CAS  Google Scholar 

  63. Moss TS, Peachey NM, Snow RC, Dye RC (1998) Multilayer metal membranes for hydrogen separation. Int J Hydrog Energy 23:99–106. https://doi.org/10.1016/S0360-3199(97)00030-X

    Article  CAS  Google Scholar 

  64. Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033

    Article  CAS  Google Scholar 

  65. Nwogu NC, Anyanwu EE, Gobina E (2016) An initial investigation of a nano-composite silica ceramic membrane for hydrogen gas separation and purification. Int J Hydrog Energy 41:8228–8235. https://doi.org/10.1016/j.ijhydene.2015.11.162

    Article  CAS  Google Scholar 

  66. Ockwig NW, Nenoff TM (2009) Membranes for hydrogen separation. Chem Rev 110:2573–2574. https://doi.org/10.1021/cr078108l

    Article  CAS  Google Scholar 

  67. Paglieri SN, Way JD (2002) Innovations in palladium membrane research. Sep Purif Methods 31:1–169. https://doi.org/10.1081/SPM-120006115

    Article  CAS  Google Scholar 

  68. Pandey P, Chauhan RS (2001) Membranes for gas separation. Progr Polym Sci 26:853–893. https://doi.org/10.1016/S0079-6700(01)00009-0

    Article  CAS  Google Scholar 

  69. Patel AK, Acharya NK (2018) Metal coated and nanofiller doped polycarbonate membrane for hydrogen transport. Int J Hydrog Energy 43:21675–21682. https://doi.org/10.1016/j.ijhydene.2018.03.205

    Article  CAS  Google Scholar 

  70. Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853

    Article  CAS  Google Scholar 

  71. Álvarez-Fernández R, Beltrán Cilleruelo F, IVM (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell range extender system. Int J Hydrog Energy 41:4808–4819

    Google Scholar 

  72. Rahimpour MR, Samimi F, Babapoor A et al (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49. https://doi.org/10.1016/j.cep.2017.07.021

    Article  CAS  Google Scholar 

  73. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Memb Sci 62:165–185. https://doi.org/10.1016/0376-7388(91)80060-J

    Article  CAS  Google Scholar 

  74. Sadilov IS, Petukhov DI, Eliseev AA (2019) Enhancing gas separation efficiency by surface functionalization of nanoporous membranes. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.03.078

    Article  Google Scholar 

  75. Sadykov VA, Krasnov AV, Fedorova YE et al (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.02.182

    Article  Google Scholar 

  76. Sanders DF, Smith ZP, Guo R et al (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer (Guildf) 54:4729–4761. https://doi.org/10.1016/J.POLYMER.2013.05.075

    Article  CAS  Google Scholar 

  77. Sanip SM, Ismail AF, Goh PS et al (2011) Gas separation properties of functionalized carbon nanotubes mixed matrix membranes. Sep Purif Technol 78:208–213. https://doi.org/10.1016/J.SEPPUR.2011.02.003

    Article  CAS  Google Scholar 

  78. Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R Rep 48:191–226. https://doi.org/10.1016/j.mser.2004.12.003

    Article  CAS  Google Scholar 

  79. Sharma A, Kumar S, Tripathi B et al (2009) Aligned CNT/Polymer nanocomposite membranes for hydrogen separation. Int J Hydrog Energy 34:3977–3982. https://doi.org/10.1016/J.IJHYDENE.2009.02.068

    Article  CAS  Google Scholar 

  80. Sharma A, Tripathi B, Vijay YK (2010) Dramatic Improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Memb Sci 361:89–95. https://doi.org/10.1016/j.memsci.2010.06.005

    Article  CAS  Google Scholar 

  81. Sharma A, Vijay YK (2012) Effect of electric field variation in alignment of SWNT/PC nanocomposites. Int J Hydrog Energy 37:3945–3948. https://doi.org/10.1016/j.ijhydene.2011.03.166

    Article  CAS  Google Scholar 

  82. Shi Z, Wu S, Szpunar JA, Roshd M (2006) An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. J Memb Sci 280:705–711

    Article  CAS  Google Scholar 

  83. Shimekit B, Mukhtar H, Murugesan T (2011) Prediction of the relative permeability of gases in mixed matrix membranes. J Memb Sci 373:152–159. https://doi.org/10.1016/j.memsci.2011.02.038

    Article  CAS  Google Scholar 

  84. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  85. Song N, Gao X, Ma Z et al (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437:59–72. https://doi.org/10.1016/J.DESAL.2018.02.024

    Article  CAS  Google Scholar 

  86. Sridhar S, Bee S, Bhargava SK (2014) Membrane-based gas separation : principle, applications and future potential. 1–25

    Google Scholar 

  87. Sudowe R, Vater W, Ensinger W et al (1999) Basic research on nuclear track microfilters for gas separation. Radiat Meas 31:691–696. https://doi.org/10.1016/S1350-4487(99)00179-1

    Article  CAS  Google Scholar 

  88. Sun M, Li J (2018) Graphene oxide membranes: functional structures, preparation and environmental applications. Nano Today 20:121–137. https://doi.org/10.1016/j.nantod.2018.04.007

    Article  CAS  Google Scholar 

  89. Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Carbon nanotubes as potential candidate for separation of H2CO2 gas pairs. Int J Hydrog Energy 42:29283–29299. https://doi.org/10.1016/j.ijhydene.2017.09.152

    Article  CAS  Google Scholar 

  90. Tao Y, Xue Q, Liu Z et al (2014) Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interfaces 6:8048–8058. https://doi.org/10.1021/am4058887

    Article  CAS  Google Scholar 

  91. Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679. https://doi.org/10.1103/physrevlett.73.676

  92. Thakkar H, Lawson S, Rownaghi AA, Rezaei F (2018) Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem Eng J 348:109–116. https://doi.org/10.1016/j.cej.2018.04.178

    Article  CAS  Google Scholar 

  93. Thomas C, James BD, Lomax FD, Kuhn IF (2000) Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline? Int J Hydrog Energy 25:551–567. https://doi.org/10.1016/S0360-3199(99)00064-6

    Article  CAS  Google Scholar 

  94. Urch H, Geismann C, Ulbricht M, Epple M (2006) Deposition of functionalized calcium phosphate nanoparticles on functionalized polymer surfaces. Mater und Werkstofftechnik Entwicklung, Fert Prüfung, Eig und Anwendungen Tech Werkstoffe 37:422–425

    CAS  Google Scholar 

  95. van Zoelen W, ten Brinke G (2009) Thin films of complexed block copolymers. Soft Matter 5:1568–1582

    Article  Google Scholar 

  96. Verweij H (2003) Ceramic membranes: morphology and transport. J Mater Sci 38:4677–4695

    Article  CAS  Google Scholar 

  97. Wang M, Wang Z, Zhao S et al (2017) Recent advances on mixed matrix membranes for CO2 separation. Chin J Chem Eng 25:1581–1597. https://doi.org/10.1016/j.cjche.2017.07.006

    Article  Google Scholar 

  98. Wang Y, Yang Q, Zhong C, Li J (2017) Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl Surf Sci 407:532–539. https://doi.org/10.1016/j.apsusc.2017.02.253

    Article  CAS  Google Scholar 

  99. Ward TL, Dao T (1999) Model of hydrogen permeation behavior in palladium membranes. J Memb Sci 153:211–231

    Article  CAS  Google Scholar 

  100. Wee S-L, Tye C-T, Bhatia S (2008) Membrane separation process—pervaporation through zeolite membrane. Sep Purif Technol 63:500–516. https://doi.org/10.1016/j.seppur.2008.07.010

    Article  CAS  Google Scholar 

  101. Wei S, Zhou S, Wu Z et al (2018) Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Appl Surf Sci 441:631–638. https://doi.org/10.1016/j.apsusc.2018.02.111

    Article  CAS  Google Scholar 

  102. Weng T-H, Tseng H-H, Wey M-Y (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrog Energy 34:8707–8715

    Article  CAS  Google Scholar 

  103. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Memb Sci 107:1–21. https://doi.org/10.1016/0376-7388(95)00102-I

    Article  CAS  Google Scholar 

  104. Wijmans JGH, Baker RW (2006) The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, pp 159–189

    Chapter  Google Scholar 

  105. Yamazaki IM, Paterson R, Geraldo LP (1996) A new generation of track etched membranes for microfiltration and ultrafiltration. Part I: Preparation and characterisation. J Memb Sci 118:239–245. https://doi.org/10.1016/0376-7388(96)00098-1

    Article  CAS  Google Scholar 

  106. Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45:3298–3311. https://doi.org/10.1021/ma300213b

    Article  CAS  Google Scholar 

  107. Yilanci A, Dincer I, Ozturk HK (2009) A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci 35:231–244. https://doi.org/10.1016/J.PECS.2008.07.004

    Article  CAS  Google Scholar 

  108. Yu S, Welp U, Hua LZ et al (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450. https://doi.org/10.1021/cm048191i

    Article  CAS  Google Scholar 

  109. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831

    Article  CAS  Google Scholar 

  110. Zhang J, Xin Q, Li X et al (2019) Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J Memb Sci 570–571:343–354. https://doi.org/10.1016/j.memsci.2018.10.075

    Article  CAS  Google Scholar 

  111. Zhang W, Gaggl M, Gluth GJG, Behrendt F (2014) Gas separation using porous cement membrane. J Environ Sci 26:140–146. https://doi.org/10.1016/S1001-0742(13)60389-7

    Article  CAS  Google Scholar 

  112. Zito PF, Caravella A, Brunetti A et al (2017) Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J Memb Sci 523:456–469

    Article  CAS  Google Scholar 

  113. Zito PF, Caravella A, Brunetti A et al (2018) Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. J Memb Sci 564:166–173. https://doi.org/10.1016/j.memsci.2018.07.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlendra Awasthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Kamakshi, Kumar, M., Awasthi, K. (2020). Nanoporous Polymeric Membranes for Hydrogen Separation. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics