Skip to main content

Experimental Setup

  • Chapter
  • First Online:
A Single Trapped Rydberg Ion

Part of the book series: Springer Theses ((Springer Theses))

  • 326 Accesses

Abstract

This chapter deals with the main parts of the laboratory and how they come together for experiments to be carried out. During experiments trapped ions are manipulated using laser pulses. In Sect. 3.1 general experimental sequences are described and experimental requirements are established. In the subsequent sections systems developed to meet these requirements are presented, namely the linear Paul trap (Sect. 3.2), laser systems (Sect. 3.3) and electronic control systems (Sect. 3.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This n-dependence can be understood in terms of the n-dependence of the ladder operators \(\hat{a}\) and \(\hat{a}^\dagger \).

  2. 2.

    With regards the transitions driven in the experiment and the typical trapping frequencies used.

  3. 3.

    Hamamatsu Photonics H10682-210.

  4. 4.

    Andor iXon3 897.

  5. 5.

    Toptica DL pro.

  6. 6.

    Toptica TA pro; a high-power source is used because the \(674\,\mathrm {nm}\) \(5S_{1/2} \leftrightarrow 4D_{5/2}\) transition is electric-dipole-forbidden and relatively high laser light intensities are required to drive it.

  7. 7.

    Toptica TA-FHG pro.

  8. 8.

    Originally a TeraXion PS-NLL DFB semiconductor laser was used. The power spectrum consists of a Lorentzian line superposed onto a broad envelope. While 80\(\mathrm {\%}\) of the laser power lies within \(2\pi \times 12\,\mathrm {kHz}\) of the centre frequency, 8\(\mathrm {\%}\) of the laser power lies outside \(2\pi \times 1\,\mathrm {MHz}\) of the centre frequency (using an observation time of \(1\,\mathrm {ms}\)). The broad envelope does not allow stable locking of the 608–\(618\,\mathrm {nm}\) laser light to the reference cavity, and it inhibits coherent excitation of Rydberg states using 304–\(309\,\mathrm {nm}\) laser light. We now use a NKT Koheras BASIK E15 DFB fibre laser which has a narrow power spectrum and allows stable locking of the 608–\(618\,\mathrm {nm}\) laser light.

  9. 9.

    Manlight EYFA-CW-SLM-P-TKS.

  10. 10.

    Toptica TA pro.

  11. 11.

    Covesion MSFG612-0.5-40.

  12. 12.

    Toptica SHG pro.

  13. 13.

    InsaneWare blu-ray diode used originally, recently replaced by a fibre-coupled system Thorlabs LP405-SF10.

  14. 14.

    Toptica DL pro.

  15. 15.

    NKT LMA-10-UV.

  16. 16.

    Stable Laser Systems.

References

  1. Biémont E et al (2000) Lifetimes of metastable states in Sr II. Eur Phys J D 11:355–365

    Article  ADS  Google Scholar 

  2. Safronova UI (2010) All-order perturbation calculation of energies, hyperfine constants, multipole polarizabilities, and blackbody radiation shift in \({}^{87}{\rm Sr}^{+}\). Phys Rev A 82:022504

    Google Scholar 

  3. Letchumanan V, Wilson MA, Gill P, Sinclair AG (2005) Lifetime measurement of the metastable \(4d 2^D_{5/2}\) state in \({}^{88}Sr^{+}\) using a single trapped ion. Phys Rev A 72:012509

    Google Scholar 

  4. Pinnington EH, Berends RW, Lumsden M (1995) Studies of laser-induced fluorescence in fast beams of Sr\(+\) and Ba\(+\) ions. J Phys B 28:2095

    Google Scholar 

  5. Zhang H et al (2016) Iterative precision measurement of branching ratios applied to 5P states in 88Sr+. New J Phys 18:123021

    Article  Google Scholar 

  6. Roos C (2000) Controlling the quantum state of trapped ions. PhD thesis, Universität Innsbruck

    Google Scholar 

  7. Pokorny F (2014) Experimental setup for trapping strontium Rydberg ions. Master’s thesis, Universität Innsbruck

    Google Scholar 

  8. Guggemos M (2017) Precision spectroscopy with trapped \({}^{40}{\rm Ca}^{+}\) and \({}^{27}{\rm Al}^{+}\)ions. PhD thesis, Universität Innsbruck

    Google Scholar 

  9. Chwalla M (2009) Precision spectroscopy with \({}^{40}{\rm Ca}^{+}\) ions in a Paul trap. PhD thesis, Universität Innsbruck

    Google Scholar 

  10. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  ADS  Google Scholar 

  11. Feldker T (2017) Rydberg excitation of trapped ions. PhD thesis, Johannes Gutenberg-Universität Mainz

    Google Scholar 

  12. Feldker T et al (2015) Rydberg excitation of a single trapped ion. Phys Rev Lett 115:173001

    Article  ADS  Google Scholar 

  13. Brownnutt M, Kumph M, Rabl P, Blatt R (2015) Ion-trap measurements of electric-field noise near surfaces. Rev Mod Phys 87:1419–1482

    Article  ADS  Google Scholar 

  14. Niedermayr M (2015) Cryogenic surface ion traps. Ph.D thesis, Universität Innsbruck

    Google Scholar 

  15. Brownnutt M et al (2007) Controlled photoionization loading of 88Sr+ for precision ion-trap experiments. Appl Phys B 87:411–415

    Article  ADS  Google Scholar 

  16. Berkeland DJ, Miller JD, Bergquist JC, Itano WM, Wineland DJ (1998) Minimization of ion micromotion in a Paul trap. J Appl Phys 83:5025–5033

    Article  ADS  Google Scholar 

  17. Keller J, Partner HL, Burgermeister T, Mehlstäubler TE (2015) Precise determination of micromotion for trapped-ion optical clocks. J Appl Phys 118:104501

    Article  ADS  Google Scholar 

  18. MüCller M, Liang L, Lesanovsky I, Zoller P (2008) Trapped Rydberg ions: from spin chains to fast quantum gates. New J Phys 10:093009

    Article  Google Scholar 

  19. Brandl MF et al (2016) Cryogenic setup for trapped ion quantum computing. Rev Sci Instrum 87:113103

    Article  ADS  Google Scholar 

  20. Mehta KK et al (2016) Integrated optical addressing of an ion qubit. Nat Nanotechnol 11:1066

    Article  ADS  Google Scholar 

  21. Manovitz T et al (2017) Fast dynamical decoupling of the Mølmer- Sørensen entangling gate. Phys Rev Lett 119:220505

    Article  ADS  Google Scholar 

  22. Barwood GP et al (2014) Agreement between two 88Sr+ optical clocks to 4 parts in 1017. Phys Rev A 89:050501

    Article  ADS  Google Scholar 

  23. Dubé P, Bernard JE, Gertsvolf M (2017) Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second. Metrologia 54:290

    Article  ADS  Google Scholar 

  24. Kolachevsky N, Alnis J, Bergeson SD, Hänsch TW (2006) Compact solid-state laser source for 1S–2S spectroscopy in atomic hydrogen. Phys Rev A 73:021801

    Article  ADS  Google Scholar 

  25. Maier C (2013) Laser system for the Rydberg excitation of strontium ions. Master’s thesis, Universität Innsbruck

    Google Scholar 

  26. Wilson AC et al (2011) A 750-mW, continuous-wave, solid-state laser source at 313nm for cooling and manipulating trapped 9Be+ ions. Appl Phys B 105:741–748

    Article  ADS  Google Scholar 

  27. Lo H-Y et al (2014) All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions. Appl Phys B 114:17–25

    Article  ADS  Google Scholar 

  28. Donley EA, Heavner TP, Levi F, Tataw MO, Jefferts SR (2005) Double-pass acousto-optic modulator system. Rev Sci Instrum 76:063112

    Article  ADS  Google Scholar 

  29. Colombe Y, Slichter DH, Wilson AC, Leibfried D, Wineland DJ (2014) Single-mode optical fiber for high-power, low-loss UV transmission. Opt Express 22:19783

    Article  ADS  Google Scholar 

  30. Haag J (2015) Glasfasern als Wellenleiter für ultraviolettes Licht. Master’s thesis, Universität Innsbruck

    Google Scholar 

  31. Drever RWP et al (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31:97–105

    Article  ADS  Google Scholar 

  32. Black ED (2001) An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys 69:79–87

    Article  ADS  Google Scholar 

  33. Kumph M (2015) 2D arrays of ion traps for large scale integration of quantum information processors. PhD thesis, Universität Innsbruck

    Google Scholar 

  34. Brandl M (2017) Towards cryogenic scalable quantum computing with trapped ions. PhD thesis, Universität Innsbruck

    Google Scholar 

  35. Ludlow AD et al (2007) Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1\(\times 10^{-15}\). Opt Lett 32:641–643

    Google Scholar 

  36. Kress F (2015) Frequenzstabilisierung eines 674 nm Diodenlasers zur Detektion der Rydberganregung von Strontiumionen. Master’s thesis, Universität Innsbruck

    Google Scholar 

  37. Benhelm J (2008) Precision spectroscopy and quantum information processing with trapped calcium ions. PhD thesis, Universität Innsbruck

    Google Scholar 

  38. Kirchmair G (2010) Quantum non-demolition measurements and quantum simulation. PhD thesis, Universität Innsbruck

    Google Scholar 

  39. Pham PTT (2005) A general-purpose pulse sequencer for quantum computing. Master’s thesis, Massachusetts Institute of Technology

    Google Scholar 

  40. Schindler P (2008) Frequency synthesis and pulse shaping for quantum information processing with trapped ions. Master’s thesis, Universität Innsbruck

    Google Scholar 

  41. Schreck F (2015) Control system. http://www.strontiumbec.com/. Accessed 20 Nov 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Higgins .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higgins, G. (2019). Experimental Setup. In: A Single Trapped Rydberg Ion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33770-4_3

Download citation

Publish with us

Policies and ethics