Implementing a Reverse Debugger for Logo

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11913)


Programming is a creative activity that teaches precision. In Logo, novices write simple programs that draw geometric shapes onto a screen. Logical flaws, however, cause unintended results and pose a major challenge for young programmers who yet need to learn how to search for errors in their code. We discuss the problems novices face when learning to program in Logo. Furthermore, we present a reverse debugger for Logo that enables programmers to step through their code in either direction. Using a stack, previous program states can be retrieved on demand. Our solution balances performance and memory consumption and hence can be used to debug even long and complex programs.


  1. 1.
    ABC. Berkeley to U.S. naval proving ground, ebp, 27 May 1946Google Scholar
  2. 2.
    Annamaa, A.: Introducing thonny, a python IDE for learning programming. In: Proceedings of the 15th Koli Calling Conference on Computing Education Research, Koli Calling 2015, pp. 117–121. ACM, New York (2015)Google Scholar
  3. 3.
    Balzer, R.M.: EXDAMS: extendable debugging and monitoring system. In: Proceedings of the May 14–16, 1969, Spring Joint Computer Conference, AFIPS 1969 (Spring), pp. 567–580. ACM, New York (1969)Google Scholar
  4. 4.
    Bender, W.: The sugar learning platform: affordances for computational thinking. Revista de Educación a Distancia (54) (2017) Google Scholar
  5. 5.
    Beyer, K.W.: Grace Hopper and the Invention of the Information Age (2015)Google Scholar
  6. 6.
    Black, A.P., Nierstrasz, O., Ducasse, S., Pollet, D.: Pharo by example. (2010)Google Scholar
  7. 7.
    Chmiel, R., Loui, M.C.: Debugging: from novice to expert. ACM SIGCSE Bull. 36, 17–21 (2004)CrossRefGoogle Scholar
  8. 8.
    Cuneo, D.O.: Young children and turtle graphics programming: Generating and debugging simple turtle programs. ERIC (1986) Google Scholar
  9. 9.
    Czyz, J.K., Jayaraman, B.: Declarative and visual debugging in eclipse. In: Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange, pp. 31–35. ACM (2007)Google Scholar
  10. 10.
    Fairley, R.E.: Aladdin: assembly language assertion driven debugging interpreter. IEEE Trans. Softw. Eng. 4, 426–428 (1979)CrossRefGoogle Scholar
  11. 11.
    Feurzeig, W., et al.: Programming-languages as a conceptual framework for teaching mathematics. Final report on the first fifteen months of the logo project (1969)Google Scholar
  12. 12.
    Forster, M., Hauser, U., Serafini, G., Staub, J.: Autonomous recovery from programming errors made by primary school children. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018. LNCS, vol. 11169, pp. 17–29. Springer, Cham (2018). Scholar
  13. 13.
    Gould, J.D.: Some psychological evidence on how people debug computer programs. Int. J. Man-Mach. Stud. 7(2), 151–182 (1975)CrossRefGoogle Scholar
  14. 14.
    Hennessy, J.L.: Symbolic debugging of optimized code (1979)Google Scholar
  15. 15.
    Hollings, C.: The lovelace byron papers. Transcript of folios, pp. 1–179 (2015)Google Scholar
  16. 16.
    Hromkovič, J.: Einführung in die Programmierung mit LOGO, vol. 1, 3rd edn. Springer, Wiesbaden (2014). Scholar
  17. 17.
    Hromkovič, J.: Einfach Informatik 5/6. Programmieren. Begleitband. Klett und Balmer AG Baar (2019)Google Scholar
  18. 18.
    Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based programming environment for schools aiming at reducing cognitive load on pupils. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231. Springer, Cham (2017). Scholar
  19. 19.
    Johnson, M.S.: Some requirements for architectural support of software debugging. SIGPLAN Not. 17(4), 140–148 (1982)CrossRefGoogle Scholar
  20. 20.
    Klahr, D., Carver, S.M.: Cognitive objectives in a logo debugging curriculum: instruction, learning, and transfer. Cogn. Psychol. 20(3), 362–404 (1988)CrossRefGoogle Scholar
  21. 21.
    Lister, R., et al.: A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bull. 36, 119–150 (2004)CrossRefGoogle Scholar
  22. 22.
    Lyon, G.: COBOL Instrumentation and Debugging: A Case Study, vol. 13. US Department of Commerce, National Bureau of Standards (1978)Google Scholar
  23. 23.
    Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books Inc., New York (1980)Google Scholar
  24. 24.
    Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., Simmons, R.: Conditions of learning in novice programmers. J. Educ. Comput. Res. 2(1), 37–55 (1986)CrossRefGoogle Scholar
  25. 25.
    Sipitakiat, A., Nusen, N.: Robo-blocks: designing debugging abilities in a tangible programming system for early primary school children. In: Proceedings of the 11th International Conference on Interaction Design and Children, pp. 98–105. ACM (2012)Google Scholar
  26. 26.
    Tropp, H.: Campbell, interview, 11 April 1972 (1972)Google Scholar
  27. 27.
    Scratch wiki. Single stepping in scratch 3.0, Status as of August 30, 2019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZürichZürichSwitzerland
  2. 2.Pädagogische Hochschule GraubündenChurSwitzerland

Personalised recommendations