Skip to main content

Nanotechnology: Environmentally Sustainable Solutions for Water Treatment

  • Chapter
  • First Online:
Nanostructured Materials for Treating Aquatic Pollution

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nanotechnology, which refers to the techniques that suggest the ways to synthesize, design and control properties in the nano region, is the processes and/or technologies which are environmentally benign, improved and can be used in such a way to reduce waste generation, cut pollution and conserve natural resources. Nanotechnology has emerged as a most revolutionary technology in the world that provides efficient, cost-effective and environmentally acceptable solutions for the decontamination of water. Although nanotechnology has been used in almost all the fields like medicine, biotechnology, electronics etc., its major application to drinking water treatment has begun only recently. Although many physical and chemical methods have been developed till now to synthesize a variety of nanomaterials but majority of them have negative effect on the environment and social life. Majority of them require high energy consumption, need toxic and costly chemicals and produce hazardous by-products. Thus, it is desirable to find alternative sources of eco-friendly and renewable materials and to develop sustainable procedures for the treatment of polluted water. As it is not possible to cover all the methods which are being used traditionally or currently to decontaminate water, in the present chapter we have picked up only the recent environmentally sustainable methodologies for the removal of contaminants like dyes, heavy metals, anions and microbial contamination in water in which nanotechnology plays the vital role. In this chapter we have mainly discussed the role of nanotechnology as an effective solution for the decontamination of wastewater in a sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pappic, S., Koprivanac, N., Metes, A.: Optimizing polymer induced flocculation process to remove the active dyes from wastewater. Environ. Technol. 21, 97–105 (2000)

    Article  Google Scholar 

  2. Rajeshwari, S., Sivakumar, S., Senthilkumar, P., Subburam, V.: Carbon from cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from the aqueous solution. Bioresour. Technol. 80, 233–235 (2001)

    Article  Google Scholar 

  3. Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., Huang, X.: Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials (2019). https://doi.org/10.3390/nano9030424

    Article  Google Scholar 

  4. Munoz-Olivas, R., Camara, C.: Speciation related to human health. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, pp. 331–353. The Royal Society of Chemistry, Food and Health (2001)

    Google Scholar 

  5. Celik, U., Oehlenschlager, J.: High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish super markets. Food Control. 18, 258–261 (2007)

    Article  CAS  Google Scholar 

  6. Ortuzar, A., Escondrillas, I., Mijangos, F.: Inorganic anion removal from water using natural adsorbents. Int. Sch. Sci. Res. Innov. 12, 284–287 (2018)

    Google Scholar 

  7. Inamori, Y., Fujimoto, N.: Water quality and standards—vol. II, microbial/biological contamination of water. Encycl. Life Support. Syst. (EOLSS). Available via dialog http://www.desware.net/Sample-Chapters/D16/E2-19-05-03.pdf (2009)

  8. Nwachcuku, N., Gerba, C.P.: Emerging waterborne pathogens: can we kill them all? Curr. Opin. Biotechnol. 15, 175–180 (2004)

    Article  CAS  Google Scholar 

  9. Dabrowski, A., Podkoscielny, P., Hubicki, Z., Barczak, M.: Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58, 1049–1070 (2005)

    Article  CAS  Google Scholar 

  10. Hristovski, K., Baumgardner, A., Westerhoff, P.: Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 147, 265–274 (2007)

    Article  CAS  Google Scholar 

  11. Diallo, M.S., Fromer, N.A., Jhon, M.S.: Nanotechnology for sustainable development: retrospective and outlook. J. Nanopart. Res. (2013). https://doi.org/10.1007/s11051-013-2044-0

    Article  Google Scholar 

  12. Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari-ghoshekandi, R., Nadagouda, M.N., Sillanpa, M., Megiel, E.: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem. 7, 1–14 (2017)

    Article  CAS  Google Scholar 

  13. Sathyaa, M., Kumarb, P.K., Santhib, M.: Dye removal from its aqueous solution by using nanoparticle as adsorbent—a review. IJASER 2, 494–504 (2017)

    Google Scholar 

  14. Ruan, W., Hu, J., Qi, J., Hou, Y., Zhou, C., Wei, X.: Removal of dyes from wastewater by nanomaterials: a review. Adv. Mater. Lett. 10, 09–20 (2019)

    Article  CAS  Google Scholar 

  15. Tan, K.A., Morad, N., Teng, T.T., Norli, I., Panneerselvam, P.: Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Procedia 1, 83–89 (2012)

    Article  CAS  Google Scholar 

  16. Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  17. Ihsanullah, Abbas A., Al-Amer, A.M., Laoui, T., Al-Marri, M., Nasser, M.S., Majeda, K., Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption application. Sep. Purif. Technol. 157, 141–161 (2016)

    Article  CAS  Google Scholar 

  18. Kumar, E., Bhavnagar, A., Hogland, W., Marques, M., Sillanpaa, M.: Interaction of anionic pollutants with al-based adsorbents in aqueous media—a review. Chem. Eng. J. 241, 443–456 (2014)

    Article  CAS  Google Scholar 

  19. Srinivasan, R.: Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. (2011). https://doi.org/10.1155/2011/872531

    Article  Google Scholar 

  20. Praveena, V.D., Kumar, K.V., Venkataraman, K.: Phosphate removal from aqueous solutions by a nano-structured Ag-chitosan film. J. Nanosci. Nanotechnol. 2, 134–137 (2016)

    Google Scholar 

  21. Singh, S.R., Krishnamurthy, N.B., Baby, Mathew Blessy: A review on recent diseases caused by microbes. JAEM 2, 106–115 (2014)

    Google Scholar 

  22. Sharma, S., Bhattacharya, A.: Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043–1067 (2017)

    Article  CAS  Google Scholar 

  23. Nabeela, F., Azizullah, A., Bibi, R., Uzma, S., Murad, W., Shakir, S.K., Ullah, W., Qasim, M., Hader, D.P.: Microbial contamination of drinking water in Pakistan—a review. Environ. Sci. Pollut. Res. 21, 13929–13942 (2014)

    Article  CAS  Google Scholar 

  24. Ashbolt, N.J.: Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198, 229–238 (2004)

    Article  CAS  Google Scholar 

  25. Aljeboree, A.M., Alshirifi, A.N., Alkaim, A.F.: Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 10, 3381–3391 (2017)

    Article  CAS  Google Scholar 

  26. Tan, I.A.W., Ahmad, A.L., Hameed, B.H.: Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154, 337–346 (2008)

    Article  CAS  Google Scholar 

  27. Banerjee, S., Chattopadhyaya, M.C.: Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 10, 1629–1638 (2017)

    Article  CAS  Google Scholar 

  28. Raju, C.H.A.I., Nooruddin, S., Babu, K.S.: Studies on leaf extract mediated synthesis of copper nanoparticles for the removal of bromo cresol green dye from synthetic waste waters. IJSETR 6, 1404–1411 (2017)

    Google Scholar 

  29. Jyoti, K., Singh, A.: Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J. Genet. Eng. Biotechnol. 14, 311–317 (2016)

    Article  Google Scholar 

  30. Eme, Femila, Srimathi, R., Charumathi, D.: Removal of malachite green using silver nanoparticles via adsorption and catalytic degradation. Int. J. Pharm. Pharm. Sci. 6, 579–583 (2014)

    Google Scholar 

  31. Satapathy, M.K., Banerjee, P., Das, P.: Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent. Appl. Nanosci. 5, 1–9 (2015)

    Article  CAS  Google Scholar 

  32. Ragab, A., Ahmed, I., Bader, D.: The removal of brilliant green dye from aqueous solution using nano hydroxyapatite/chitosan composite as a sorbent. Molecules (2019). https://doi.org/10.3390/molecules24050847

    Article  Google Scholar 

  33. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I., Marchant, R., Smyth, W.: Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56, 81–87 (2001)

    Article  CAS  Google Scholar 

  34. Jafari, N., Soudi, M.R., Kasra-Kermanshahi, R.: Biodegradation perspectives of azo dyes by yeasts. Microbiology 83, 484–497 (2014)

    Article  CAS  Google Scholar 

  35. Corso, C.R.: Bioremediation of dyes in textile effluents by aspergillus oryzae. Microb. Ecol. 57, 384–390 (2009)

    Article  CAS  Google Scholar 

  36. Bayoumi, M.N., Al-Wasify, R.S., Hamed, S.R.: Bioremediation of textile wastewater dyes using local bacterial isolates. Int. J. Curr. Microbiol. 3, 962–970 (2014)

    Google Scholar 

  37. Fulekar, M.H., Pathak, B., Kale, R.K.: Nanotechnology: perspective for environmental sustainability. In: Fulekar, M.H., Pathak, B., Kale, R.K. (eds.) Environment and Sustainable Development. https://doi.org/10.1007/978-81-322-1166-2 (2014)

    Google Scholar 

  38. Rengaraj, S., Venkataraj, S., Yeon, J.W., Kim, Y., Li, X.Z., Pang, G.K.H.: Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B: Environ. 77, 157–165 (2007)

    Article  CAS  Google Scholar 

  39. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  CAS  Google Scholar 

  40. Weng, X., Huang, L., Chen, Z., Megharaj, M., Naidu, R.: Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crop. Prod. 51, 342–347 (2013)

    Article  CAS  Google Scholar 

  41. Tandon, P.K., Shukla, R.C., Singh, S.B.: Removal of arsenic(III) from water with clay supported iron nanoparticles synthesized with the help of tea liquor. Ind. Eng. Chem. Res. 52, 10052–10058 (2013)

    Article  CAS  Google Scholar 

  42. Machado, S., Stawinski, W., Slonina, P., Pinto, A.R., Grosso, J.P., Nouws, H.P., Albergaria, J.T., Delerue-Matos, C.: Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci. Total. Environ. 461–462, 323–329 (2013)

    Article  CAS  Google Scholar 

  43. Wang, T., Lin, J., Chen, Z., Megharaj, M., Naidu, R.: Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 83, 413–419 (2014)

    Article  CAS  Google Scholar 

  44. Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., Khosravi, R.: A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol. 28, 122–130 (2017)

    Article  CAS  Google Scholar 

  45. Prasad, K.S., Gandhi, P., Kaliaperumal, S.: Synthesis of green nano iron particles (Gnip) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl. Surf. Sci. 317, 1052–1059 (2014)

    Article  CAS  Google Scholar 

  46. Juang, R.S., Shiau, R.C.: Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membr. Sci. 165, 159–167 (2000)

    Article  CAS  Google Scholar 

  47. Qdais, H.A., Moussa, H.: Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164, 105–110 (2004)

    Article  CAS  Google Scholar 

  48. Barakat, M.A.: Removal of Cu(II), Ni(II), and Cr(III) ions from wastewater using complexation—ultrafiltration technique. J. Environ. Sci. Technol. 1, 151–156 (2008)

    Article  CAS  Google Scholar 

  49. Trivunac, K., Stevanovic, S.: Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 64, 486–491 (2006)

    Article  CAS  Google Scholar 

  50. Muslehiddinoglu, J., Uludag, Y., Ozbelge, H.O., Yilmaz, L.: Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration. J. Membr. Sci. 140, 251–266 (1998)

    Article  CAS  Google Scholar 

  51. Canizares, P., Perez, A., Camarillo, R.: Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination 144, 279–285 (2002)

    Article  CAS  Google Scholar 

  52. Muthukrishnan, M., Guha, B.K.: Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219, 171–178 (2008)

    Article  CAS  Google Scholar 

  53. Murthy, Z.V.P., Chaudhari, L.B.: Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using SpieglereKedem model. Chem. Eng. J. 150, 181–187 (2009)

    Article  CAS  Google Scholar 

  54. Csefalvay, E., Pauer, V., Mizsey, P.: Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 240, 132–142 (2009)

    Article  CAS  Google Scholar 

  55. Figoli, A., Cassano, A., Criscuoli, A., Mozumder, M.S.I., Uddin, M.T., Islam, M.A., Drioli, E.: Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 44, 97–104 (2010)

    Article  CAS  Google Scholar 

  56. Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R., Ajayan, P.M.: Carbon nanotube filters. Nat. Mater. 3, 610–614 (2004)

    Article  CAS  Google Scholar 

  57. Shah, M.A., Ahmed, T.: Principles of Nanoscience and Nanotechnology, pp. 34–47. Narosa Publishing House, New Delhi, India (2011)

    Google Scholar 

  58. Wajima, T., Umeta, Y., Narita, S., Sugawara, K.: Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent. Desalination 249, 323–330 (2009)

    Article  CAS  Google Scholar 

  59. Bhatnagar, A., Sillanpaa, M.: A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 168, 493–504 (2011)

    Article  CAS  Google Scholar 

  60. Ajmal, Z., Muhmood, A., Usman, M., Kizito, S., Lu, J., Dong, R., Wu, S.: Phosphate removal from aqueous solution using iron oxides: adsorption, desorption and regeneration characteristics. J. Colloid Interface Sci. 528, 145–155 (2018)

    Article  CAS  Google Scholar 

  61. Wang, L., Zhang, J., Liu, J., He, H., Yang, M., Yu, J., Ma, Z., Jiang, F.: Removal of bromate ion using powdered activated carbon. J. Environ. Sci. 22, 1846–1853 (2010)

    Article  CAS  Google Scholar 

  62. Robert, P., Cannon, F.S.: The removal of perchlorate from groundwater by activated carbon tailored with cationic surfactants. Water Res. 39, 4020–4028 (2005)

    Article  CAS  Google Scholar 

  63. Parikh, R.Y., Singh, S., Prasad, B.L., Patole, M.S., Sastry, M., Shouche, Y.S.: Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9, 1415–1422 (2008)

    Article  CAS  Google Scholar 

  64. Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y., Uruga, T.: Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 128, 648–653 (2007)

    Article  CAS  Google Scholar 

  65. Willner, I., Baron, R., Willner, B.: Growing metal nanoparticles by enzymes. Adv. Mater. 18, 1109–1120 (2006)

    Article  CAS  Google Scholar 

  66. Shankar, S.S., Rai, A., Ahmad, A., Sastry, M.: Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem [Azadirachta indica] leaf broth. J. Colloid Interface Sci. 275, 496–502 (2004)

    Article  CAS  Google Scholar 

  67. Schultz, S., Smith, D.R., Mock, J.J., Schultz, D.A.: Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. 97, 996–1001 (2000)

    Article  CAS  Google Scholar 

  68. Wang, Y.H., Zhou, J., Wang, T.: Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles. Mater. Lett. 62, 1937–1940 (2008)

    Article  CAS  Google Scholar 

  69. Venkatpurwar, V., Pokharkar, V.: Green synthesis of silver nanoparticles using marine polysaccharide: study of in vitro antibacterial activity. Mater. Lett. 65, 999–1002 (2011)

    Article  CAS  Google Scholar 

  70. Elechiguerra, J.L., Burt, J.L., Morones, J.R., Bragado, A.C., Gao, X., Lara, H.H., Yacaman, M.J.: Interaction of silver nanoparticles with HIV. J. Nanobiotechnol. (2005). https://doi.org/10.1186/1477-3155-3-6

    Article  Google Scholar 

  71. Chen, H., Hao, F., He, R., Cui, D.X.: Chemiluminescence of luminol catalyzed by silver nanoparticles. J. Colloid Interface Sci. 315(1), 58–163 (2007)

    Article  CAS  Google Scholar 

  72. Crooks, R.M., Lemon, B.I., Sun, L., Yeung, L.K., Zhao, M.: Dendrimer-encapsulated metals and semiconductors: synthesis, characterization and application. Top. Curr. Chem. 212, 82–135 (2001)

    Google Scholar 

  73. Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N., Kalaichelvan, P.T.: Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process. Biochem. 47, 651–658 (2012)

    Article  CAS  Google Scholar 

  74. Lohse, S.E., Murphy, C.J.: Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 15607–15620 (2012)

    Article  CAS  Google Scholar 

  75. Salari, Z., Danafar, F., Dabaghi, S., Ataei, S.A.: Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J. Saudi Chem. Soc. 20, 459–464 (2016)

    Article  CAS  Google Scholar 

  76. Moustafa, M.T.: Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci. 31, 164–176 (2017)

    Article  Google Scholar 

  77. Gudikandula, K., Maringanti, S.C.: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 9, 714–721 (2016)

    Article  CAS  Google Scholar 

  78. Kuppusamy, P., Yusoff, M.M., Maniam, G.P., Govindan, N.: Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 24, 473–484 (2016)

    Article  Google Scholar 

  79. Ajmal, N., Saraswat, K., Bakht, M.A., Riadi, Y., Ahsan, M.J., Noushad, M.: Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 12, 244–254 (2019)

    Article  CAS  Google Scholar 

  80. Ayinde, W.B., Gitari, M.W., Muchindu, M., Samie, A.: Biosynthesis of ultrasonically modified Ag-MgO nanocomposite and its potential for antimicrobial activity. J. Nanotechnol. (2018). https://doi.org/10.1155/2018/9537454

    Article  Google Scholar 

  81. Sivapriya, V., Azeez, A.N., Deepa, S.V.: Phyto synthesis of iron oxide nano particles using the agro waste of Anthocephalus cadamba for pesticidal activity against Sitophilus granaries. J. Entomol. Zool. Stud. 6, 1050–1057 (2018)

    Google Scholar 

  82. Lee, C., Kim, J.Y., Lee, W.I.I., Nelson, K.L., Yoon, J., Sedlak, D.L.: Bactericidal effect of zero-valent iron nanoparticles on escherichia coli. Environ. Sci. Technol. 42, 4927–4933 (2008)

    Article  CAS  Google Scholar 

  83. Logeswari, P., Silambarasan, S., Abraham, J.: Synthesis of silver nanoparticles using plant extracts and analysis of their antimicrobial activity. J. Saudi Chem. Soc. 4, 23–45 (2012)

    Google Scholar 

  84. Al-Dhabi, N.A., Arasu, M.V.: Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials (2018). https://doi.org/10.3390/nano8070500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M.K., Tandon, P.K., Shukla, N. (2019). Nanotechnology: Environmentally Sustainable Solutions for Water Treatment. In: Gonçalves, G., Marques, P. (eds) Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-33745-2_8

Download citation

Publish with us

Policies and ethics