Skip to main content

Removal of Metal Ions Using Graphene Based Adsorbents

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The pollution of water sources with toxic metal ions is a thoughtful subject. Numerous aquatic systems are polluted with dissimilar toxic metal ions from various industrial effluents and anthropogenic activities. Water treatment seems to the chief environmental test. The sorption is the best effective method for metal ions elimination in water. Currently, graphene and its composite materials are attaining significance as new generation nano-sorbents. Graphene is a two dimensional nanomaterial with single layer of graphite. These have achieved a great reputation in water treatment because of their distinctive physico-chemical features. The present chapter describes the elimination of metal ions using graphene and its composite materials. The emphasis has been made on syntheses, applications, regeneration and recycling and future perspectives. Definitely, this chapter will be valuable tool for researchers, government authorities and academicians.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gupta, V.K., Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, The Netherlands (2012)

    Google Scholar 

  2. Ali, I., Aboul-Enein, H.Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. Taylor & Francis Ltd., New York, USA (2006)

    Book  Google Scholar 

  3. Hu, J., Zhao, D.L., Wang, X.K.: Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic composites. Water Sci. Technol. 63, 917–923 (2011)

    Article  CAS  Google Scholar 

  4. Srivastava, S.K., Bhattacharjee, G., Tyagi, R., Pant, N., Pal, N.: Studies on the removal of some toxic metal-ions from aqueous-solutions and industrial-waste. 1. Removal of lead and cadmium by hydrous iron and aluminum-oxide. Environ. Technol. Lett. 9, 1173–1185 (1988)

    Article  CAS  Google Scholar 

  5. Ozay, O., Ekici, S., Baran, Y., Aktas, N., Sahiner, N.: Removal of toxic metal ions with magnetic hydrogels. Water Res. 43, 4403–4411 (2009)

    Article  CAS  Google Scholar 

  6. Jamil M, Zia MS, Qasim M (2010) Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation. J. Chem. Soc. Pak. 32: 370–378

    Google Scholar 

  7. Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., Zhu, Y.G.: Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China, Environ Pollut 152, 686–692 (2008)

    Article  CAS  Google Scholar 

  8. Singh, A., Sharma, R.K., Agrawal, M., Marshall, F.M.: Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 48, 611–619 (2010)

    Article  CAS  Google Scholar 

  9. Peng, S.H., Wang, W.X., Li, X.D., Yen, Y.F.: Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere 57, 839–851 (2004)

    Article  CAS  Google Scholar 

  10. Snoeyink, V.L., Jenkins, D.: Water Chemistry. Wiley, New York, USA (1980)

    Google Scholar 

  11. Hodges, L.: Environmental Pollution, 2nd ed., Holt, Rinehart and Winston, New York, USA (1973)

    Google Scholar 

  12. World Health Organization.: Guidelines for Drinking Water Quality. Health Criteria and Other Supporting Information, 2nd ed., WHO, Geneva, Switzerland (1996)

    Google Scholar 

  13. US Environmental Protection Agency: Ground Water and Drinking Water, Current Drinking Water Standards, EPA-822-F-97-009. Office of Water, Washington, DC (2002)

    Google Scholar 

  14. Okamura, H., Aoyama, I.: Interactive toxic effect and distribution of heavy metals in phytoplankton. Environ. Toxicol. Water Qual. 9, 7–15 (1994)

    Article  CAS  Google Scholar 

  15. Martin, T.R., Holdich, D.M.: The acute lethal toxicity of heavy metals to percarid crustaceans (with particular reference to fresh-water asellids and gammarids. Water Res. 20, 1137–1147 (1986)

    Article  CAS  Google Scholar 

  16. Moore, J.W.: Inorganic Contaminants of Surface Water Research and Monitoring Priorities. Springer-Verlag, New York, USA (1991)

    Book  Google Scholar 

  17. Yamamura, Y., Yamauchi, H.: Arsenic metabolites in hair, blood and urine in workers exposed to arsenic trioxide Industrial Health 18: 203–210 (1980)

    Article  CAS  Google Scholar 

  18. World Health Organisation.: Environmental health criteria, 18: Arsenic, world health organisation, Geneva (1981)

    Google Scholar 

  19. Pershagen, G.: The Epidemiology of human arsenic exposure. In: Fowler, B.A. (ed.) Elsevier, Amsterdam, The Netherlands, 199 (1983)

    Google Scholar 

  20. Csanady, M., Straub, I.: Health damage due to pollution in hungary. In: Proceedings of the Rome Symposium, IAHS Publ No 233 (1995)

    Google Scholar 

  21. Johnson, B.B.: Effects of pH, temperature and concentration on the adsorption of cadmium on goethite. Environ. Sci. Technol. 24, 112–118 (1990)

    Article  CAS  Google Scholar 

  22. Waseem, M., Mustafa, S., Naeem, A., Koper, G.J.M., Shah, K.H.: Cd2+ sorption characteristics or iron coated silica. Desalination 277, 221–226 (2011)

    Article  CAS  Google Scholar 

  23. Waalkes, M.P.: Cadmium carcinogenesis in review. J. Inorg. Biochem. 79, 241–244 (2000)

    Article  CAS  Google Scholar 

  24. International Agency for Research on Cancer Monographs: Beryllium, Cadmium, Mercury and Exposures in the Glass Industry, vol. 58, p. 119. IARC, Lyon (1993)

    Google Scholar 

  25. National Toxicology Program.: Tenth Report on Carcinogens, Department of Health and Human Services, Research Triangle Park, NC, III-42 (2000)

    Google Scholar 

  26. Pesch, B., Haerting, J., Ranft, U., Klimpel, A., Oelschlagel, B., Schill, W.: MURC Study Group. Occupational risk factors for renal cell carcinoma: agent-specific results from a case–control study in Germany. Int. J. Epidemiol. 29, 1014–1024 (2000)

    Article  CAS  Google Scholar 

  27. Hu, J., Mao, Y., White, K.: Canadian cancer registries epidemiology research group. Renal cell carcinoma and occupational exposure in Canada. Occup. Med. 52, 157–164 (2002)

    Article  CAS  Google Scholar 

  28. Waalkes, M.P., Misra, R.R.: Cadmium carcinogenicity and genotoxicity. In: Chang, L. (ed.) Toxicology of Metals, p. 231. CRC Press, Boca Raton, FL (1996)

    Google Scholar 

  29. Fantoni, D., Brozzo, G., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., Zuccolini, M.V.: Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Geol. 42, 871–882 (2002)

    Article  CAS  Google Scholar 

  30. Ball, J.W., Izbicki, J.A.: Occurrence of hexavalent chromium in groundwater in the Western Mojave desert, California. Appl Geochem. 19, 1123–1135 (2004)

    Article  CAS  Google Scholar 

  31. Gibb, H.J., Lees, P.S., Pinsky, P.F., Rooney, B.C.: Lung cancer among workers in chromium chemical production. Am. J. Ind. Med. 38, 115–126 (2000)

    Article  CAS  Google Scholar 

  32. Leonard, A., Lauwerys, R.R.: Carcinogenicity and mutagenicity of chromium. Mutat. Res. 76, 227–239 (1980)

    Article  CAS  Google Scholar 

  33. Kramer, J.R., Allen, H.E.: Metal speciation: theory, analysis and application, Lewis Chelsea (1988)

    Google Scholar 

  34. Krull, I.S.: Trace Metal Analysis and Speciation. Elsevier, Amsterdam, The Netherlands (1991)

    Google Scholar 

  35. Mattson, J.S., Mark, H.B.: Activated carbon surface chemistry and adsorption from aqueous solution. Marcel Dekker, New York (1971)

    Google Scholar 

  36. Cheremisinoff, P.N., Ellerbush, F.: Carbon Adsorption Hand Book. Ann Arbor Science Publishers, Michigan (1979)

    Google Scholar 

  37. Faust, S.D., Aly, O.M.: Chemistry of Water Treatment. Butterworth, Stoneham (1983)

    Google Scholar 

  38. Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    Article  CAS  Google Scholar 

  39. Pu, N.W., Wang, C.A., Liu, Y.M., Sung, Y., Wang, D.S., Ger, M.D.: Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J. Taiwan Inst. Chem. Eng. 43, 140–146 (2012)

    Article  CAS  Google Scholar 

  40. Boehm, H.: Graphene-how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed. 49(49), 9332–9335 (2010)

    Article  CAS  Google Scholar 

  41. Ahmadi-Moghadam, B., Taheri, F.: Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J. Mater. Sci. 49, 6180–6190 (2014)

    Article  CAS  Google Scholar 

  42. Abdelkader, A.M., Cooper, A.J., Dryfe, R.A.W., Kinloch, I.A.: How to get between the sheets? A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7, 6944–6956 (2015)

    Article  CAS  Google Scholar 

  43. Chung, D.D.L.: A review of exfoliated graphite. J. Mater Sci. 51, 554–568 (2015)

    Article  CAS  Google Scholar 

  44. Segal, M.: Selling grapheme by the ton. Nat. Nanotech. 4, 612–614 (2009)

    Article  CAS  Google Scholar 

  45. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  Google Scholar 

  46. Ruan, M., Hu, Y., Guo, Z., Dong, R., Palmer, J., Hankinson, J., Berger, C., de-Heer, W.A.: Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS Bull. 37, 1138–1147 (2012)

    Article  CAS  Google Scholar 

  47. Leenaerts, O., Partoens, B., Peeters, F.M.: Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008)

    Article  CAS  Google Scholar 

  48. Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic layer graphene sheets. Int. J. Appl. Mech. 1, 443–467 (2009)

    Article  Google Scholar 

  49. Zaib, Q., Fath, H.: Application of carbon nano-materials in desalination processes. Desalin Water Treat 51, 627–636 (2012)

    Article  CAS  Google Scholar 

  50. Alsharaeh, E., Ahmed, F., Aldawsari, Y., Khasawneh, M., Abuhimd, H., Alshahrani, M.: Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Sci. Rep. 6, 29854 (2016)

    Article  CAS  Google Scholar 

  51. Suk, M.E., Aluru, N.: Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010)

    Article  CAS  Google Scholar 

  52. Climent-Pascual, E., Garcia-Velez, M., Álvarez, Á.L., Coya, C., Munuera, C., Diez-Betriu, X.: Large area graphene and graphene oxide patterning and nanographene fabrication by one-step lithography. Carbon 90, 110–121 (2015)

    Article  CAS  Google Scholar 

  53. Yang, J., Gunasekaran, S.: Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51, 6–44 (2013)

    Google Scholar 

  54. Ali, I., Basheer, A.A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Article  CAS  Google Scholar 

  55. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012)

    Article  CAS  Google Scholar 

  56. Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nature London 1, 2661–2667 (2006)

    CAS  Google Scholar 

  57. Mishra, S.P.: Adsorption-desorption of heavy metal ions. Curr Sci India 107, 601–612 (2014)

    CAS  Google Scholar 

  58. Singh, N., Gupta, S.K.: Adsorption of heavy metals: a review. Int. J. Innovative Res. Sci. 5, 2267–2281 (2016)

    Google Scholar 

  59. Chang, C.F., Truong, Q.D., Chen, J.R.: Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 264, 329–334 (2013)

    Article  CAS  Google Scholar 

  60. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  CAS  Google Scholar 

  61. Wu, W.Q., Yang, Y., Zhou, H.H., Ye, T.T., Huang, Z.Y., Liu, R., Kuang, Y.: Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air and Soil Pollut 224, 1372 (2013)

    Article  CAS  Google Scholar 

  62. Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heinman, J., Gagor, A., Feist, B., Wrzalik, R.: Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 42, 5682–5689 (2013)

    Article  CAS  Google Scholar 

  63. Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y.: Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 279, 432–440 (2013)

    Article  CAS  Google Scholar 

  64. Mi, X., Huang, G., Xie, W., Wang, W., Liu, Y., Gao, J.P.: Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50, 4856–4864 (2012)

    Article  CAS  Google Scholar 

  65. Zhao, G., Li, J., Ren, X., Chen, C., Wang, X.: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45, 10454–10462 (2011)

    Article  CAS  Google Scholar 

  66. Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y., Wang, X.: Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40, 10945–10952 (2011)

    Article  CAS  Google Scholar 

  67. Yan, L., Zheng, Y.B., Zhao, F., Li, S., Gao, X., Xu, B., Weiss, P.S., Zhao, Y.: Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012)

    Article  CAS  Google Scholar 

  68. Deng, X., Lu, L., Li, H., Luo, F.: The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 183, 923–930 (2010)

    Article  CAS  Google Scholar 

  69. Yuan, Y., Zhang, G., Li, Y., Zhang, G., Zhang, F., Fan, X.: Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions. Polym Chem 4, 2164–2167 (2013)

    Article  CAS  Google Scholar 

  70. Huang, Z.H., Zheng, X., Lv, W., Wang, M., Yang, Q.H., Kang, F.: Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27, 7558–7562 (2011)

    Article  CAS  Google Scholar 

  71. Leng, Y., Guo, W., Su, S., Yi, C., Xing, L.: Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 211, 406–411 (2012)

    Article  CAS  Google Scholar 

  72. Madadrang, C.J., Kim, H.Y., Gao, G., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M.L., Hou, S.: Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces. 4, 1186–1193 (2012)

    Article  CAS  Google Scholar 

  73. Jabeen, H., Chandra, V., Jung, S., Lee, J.W., Kim, K.S., Kim, S.B.: Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale 3, 3583–3585 (2011)

    Article  CAS  Google Scholar 

  74. Li, S., Lu, X., Xue, Y., Lei, J., Zheng, T., Wang, C.: Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS ONE 7, 43328 (2012)

    Article  CAS  Google Scholar 

  75. Hao, L., Song, H., Zhang, L., Wan, X., Tang, Y., Lv, Y.: SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interface Sci. 369, 381–387 (2012)

    Article  CAS  Google Scholar 

  76. Zhang, K., Dwivedi, V., Chi, C., Wu, J.: Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater. 182, 162–168 (2010)

    Article  CAS  Google Scholar 

  77. Sui, Z., Meng, Q., Zhang, X., Ma, R., Cao, B.: Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem. 22, 8767–8771 (2012)

    Article  CAS  Google Scholar 

  78. Luo, X., Wang, C., Wang, L., Deng, F., Luo, S., Tu, X., Au, C.: Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chem. Eng. J. 220, 98–106 (2013)

    Article  CAS  Google Scholar 

  79. Lee, Y.C., Yang, J.W.: Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem. 18, 1178–1185 (2012)

    Article  CAS  Google Scholar 

  80. Yuan, X., Wang, Y., Wang, J., Zhou, C., Tang, Q., Rao, X.: Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 221, 204–213 (2013)

    Article  CAS  Google Scholar 

  81. Algothmi, W.M., Bandaru, N.M., Yu, Y., Shapter, J.G., Ellis, A.V.: Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material. J. Colloid Interface Sci. 397, 32–38 (2013)

    Article  CAS  Google Scholar 

  82. Peng, F., Luo, T., Qiu, L., Yuan, Y.: An easy method to synthesize graphene oxide-FeOOH composites and their potential application in water Purification. Mater. Res. Bull. 48, 2180–2185 (2013)

    Article  CAS  Google Scholar 

  83. Zhu, J., Wei, S., Chen, M., Gu, H., Rapole, S.B., Pallavkar, S., Ho, T.C., Hopper, J., Guo, Z.: Magnetic nanocomposites for environmental remediation. Adv. Powder Technol. 24, 459–467 (2013)

    Article  CAS  Google Scholar 

  84. Hu, X.J., Liu, Y.G., Wang, H., Chen, A.W., Zeng, G.M., Liu, S.M., Guo, Y.M., Hu, X., Li, T.T., Wang, Y.Q., Zhou, L., Liu, S.H.: Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 108, 189–195 (2013)

    Article  CAS  Google Scholar 

  85. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P., Rodrigues, D.F.: Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite. J. Mater. Chem. 1, 3789–3796 (2013)

    Article  CAS  Google Scholar 

  86. Tripathy, S.S., Kanungo, S.B.: Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture ofδ-MnO2 and amorphous FeOOH. J. Colloid Interface Sci. 284, 30–38 (2005)

    Article  CAS  Google Scholar 

  87. Dong, Y., Yang, H., He, K., Song, S., Zhang, A.: ß-MnO2 nanowires: A novel ozonation catalyst for water treatment. Appl. Catal B: Environ. 85, 155–161 (2009)

    Article  CAS  Google Scholar 

  88. Zhao, D.L., Yang, X., Zhang, H., Chen, C.L., Wang, X.K.: Effect of environmental conditions on Pb(II) adsorption on b-MnO2. Chem. Eng. J. 164, 49–55 (2010)

    Article  CAS  Google Scholar 

  89. Zhu, M.X., Wang, Z., Xu, S.H., Li, T.: Decolorization of methylene Blue by δ-MnO2-coated montmorillonite complexes: emphasizing redox reactivity of Mn-Oxide coatings. J. Hazard. Mater. 181, 57–64 (2010)

    Article  CAS  Google Scholar 

  90. Ren, Y., Yan, N., Wen, Q., Fan, Z., Wei, T., Zhang, M., Ma, J.: Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7 (2011)

    Article  CAS  Google Scholar 

  91. Ren, Y., Yan, N., Feng, J., Ma, J., Wen, Q., Li, N., Dong, Q.: Adsorption mechanism of copper and lead ions onto graphene nanosheet/d-MnO2. Mater. Chem. Phys. 136, 538–544 (2012)

    Article  CAS  Google Scholar 

  92. Gerente, C., Lee, V.K.C., Le-Cloirec, P., McKay, G.: Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit. Rev. Env. Sci. Technol. 37, 41–127 (2007)

    Article  CAS  Google Scholar 

  93. He, Y.Q., Zhang, N.N., Wang, X.D.: Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin. Chem. Lett. 22, 859–862 (2011)

    Article  CAS  Google Scholar 

  94. Zhang, N., Qiu, H., Si, Y., Wang, W., Gao, J.: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 49, 827–837 (2011)

    Article  CAS  Google Scholar 

  95. Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X., Zhang, Q.: Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta 93, 350–357 (2012)

    Article  CAS  Google Scholar 

  96. Chen, Y., Chen, L., Bai, H., Li, L.: Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 1, 1992–2001 (2013)

    Article  CAS  Google Scholar 

  97. Li, L., Fan, L., Sun, M., Qiu, H., Li, X., Duan, H., Luo, C.: Adsorbent for chromium removal based on graphene oxide functionalized. Colloids Surf B: Biointerfaces 107, 76–83 (2013)

    Article  CAS  Google Scholar 

  98. Fan, L., Luo, C., Sun, M., Li, X., Qiu, H.: Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B: Biointerfaces 103, 523–529 (2013)

    Article  CAS  Google Scholar 

  99. Shin, S., Jang, J.: Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem. Commun. 41, 4230–4232 (2007)

    Article  CAS  Google Scholar 

  100. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)

    Article  CAS  Google Scholar 

  101. Liu, M., Chen, C., Hu, J., Wu, X., Wang, X.: Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J. Phys. Chem. C 115, 25234–25240 (2011)

    Article  CAS  Google Scholar 

  102. Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)

    Article  CAS  Google Scholar 

  103. Yang, X., Chen, C., Li, J., Zhao, G., Ren, X., Wang, X.: Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2, 8821–8826 (2012)

    Article  CAS  Google Scholar 

  104. Nandi, D., Gupta, K., Ghosh, A.K., De, A., Banerjee, S., Ghosh, U.C.: Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. Nanotech Sustain. Dev. 149–162 (2012)

    Google Scholar 

  105. Zhu, J., Wei, S., Gu, H., Rapole, S.B., Wang, Q., Luo, Z., Haldolaarachchige, N., Young, D.P., Guo, Z.: One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 46, 977–985 (2012)

    Article  CAS  Google Scholar 

  106. Chandra, V., Kim, K.S.: Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. 47, 3942–3944 (2011)

    Article  CAS  Google Scholar 

  107. Sreeprasad, T.S., Maliyekkal, S.M., Lisha, K.P., Pradeep, T.: Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186, 921–931 (2011)

    Article  CAS  Google Scholar 

  108. Bhunia, P., Kim, G., Baik, C., Lee, H.: A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem. Commun. 48, 9888–9890 (2012)

    Article  CAS  Google Scholar 

  109. Zhang, K., Li, H., Xu, X., Yu, H.: Synthesis of reduced graphene oxide/NiO nanocomposite for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater. 255, 7–14 (2018)

    Article  CAS  Google Scholar 

  110. Ashour, R.W., Abdelhamid, H.N., Abdel-Magied, A.F., Abdel-Khalek, A.A., Ali, M.M., Uheida, A., Muhammed, M., Zhou, X., Dutta, J.: Rare earth ions adsorption onto graphene oxide nanosheets. Solvent Extr. Ion Exch. 35, 91–103 (2017)

    Article  CAS  Google Scholar 

  111. Gu, D., Fein, J.B.: Adsorption of metals onto graphene oxide: surface complexation modeling and linear free energy relationships. Colloids Surf A: Phys. Chem Eng Asp. 481, 319–327 (2015)

    Article  CAS  Google Scholar 

  112. Peng, W., Li, H., Li, Y., Song, S.: A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230, 496–504 (2017)

    Article  CAS  Google Scholar 

  113. Moeser, G.D., Roach, K.A., Green, W.H., Hatton, T.A.: High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J. 50, 2835–2848 (2004)

    Article  CAS  Google Scholar 

  114. Kim, S., Marion, M., Jeong, B.H., Hoek, E.M.V.: Crossflow membrane filtration of interacting nanoparticle suspensions. J. Membr. Sci. 284, 361–372 (2006)

    Article  CAS  Google Scholar 

  115. Ali, I., Alharbi, O.M.L., Tkachev, A., Galunin, E., Burakov, A., Grachev, V.: Water treatment by new generation graphene materials: Hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018)

    Article  CAS  Google Scholar 

  116. Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., Cheng, J.: Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membrane. J. Hazard. Mater. 297, 251–260 (2015)

    Article  CAS  Google Scholar 

  117. Sahraei, R., Pour, Z.S., Ghaemy, M.: Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanthin/graphene oxide: removal of heavy metals and dyes from water. J. Cleaner Prod. 142, 2973–2984 (2017)

    Article  CAS  Google Scholar 

  118. Chen, X., Zhou, S., Zhang, L., You, T., Xu, F.: Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Mater 9, 582–596 (2016)

    Article  CAS  Google Scholar 

  119. La, D.D., Nguyen, T.H.P., Nguyen, T.A., Bhosale, S.V.: Effective removal of Pb(II) using a graphene ternary oxides composite as an adsorbent in aqueous media. New J. Chem. 41, 14627–14634 (2017)

    Article  CAS  Google Scholar 

  120. Chen, L., Li, X., Tanner, E.E.L., Compton, R.G.: Catechol adsorption on graphene nanoplatelets: Isotherm, flat to vertical phase transition and desorption kinetics. Chem. Sci. 8, 4771–4778 (2017)

    Article  CAS  Google Scholar 

  121. Gan, X., Teng, Y., Ren, W., Ma, J., Christie, P., Luo, Y.: Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 27, 527–536 (2017)

    Article  Google Scholar 

  122. Pan, M., Shan, Ch., Zhang, X., Zhang, Y., Zhu, Ch., Gao, G., Pan, B.: Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent. Environ. Sci. Technol. 52, 739–746 (2018)

    Article  CAS  Google Scholar 

  123. Li, D., Zhang, B., Xuan, F.: The sorption of Eu(III) from aqueous solutions by magnetic graphene oxides: a combined experimental and modeling studies. J. Mol. Liq. 211, 203–209 (2015)

    Article  CAS  Google Scholar 

  124. Yusan, S., Gok, C., Erenturk, S., Aytas, S.: Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl. Clay Sci. 67, 106–116 (2012)

    Article  CAS  Google Scholar 

  125. Greaves, M.J., Elderfield, H., Klinkhammer, G.P.: Determination of the rare earth elements in natural waters by isotope-dilution mass spectrometry. Anal. Chim. Acta 218, 265–280 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, I., ALOthman, Z.A., Alwarthan, A. (2019). Removal of Metal Ions Using Graphene Based Adsorbents. In: Gonçalves, G., Marques, P. (eds) Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-33745-2_1

Download citation

Publish with us

Policies and ethics