Measuring the Fog, Gently

  • Antonio Brogi
  • Stefano FortiEmail author
  • Marco Gaglianese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11895)


The availability of suitable monitoring tools and techniques will be crucial to orchestrate multi-service applications in a context- and QoS-aware manner over new Fog infrastructures. In this paper, we propose FogMon, a lightweight distributed prototype monitoring tool, which measures data about hardware resources (viz., CPU, RAM, HDD) at the available Fog nodes, end-to-end network QoS (viz., latency and bandwidth) between those nodes, and detects connected IoT devices. FogMon is organised into a peer-to-peer architecture and it shows a very limited footprint on both hardware and bandwidth. The usage of FogMon on a real testbed is presented.


Fog computing Lightweight monitoring Network QoS Hardware resources Internet of Things Peer-to-peer architectures 



This work has been partly supported by the project “DECLWARE: Declarative methodologies of application design and deployment” (PRA_2018_66), funded by University of Pisa, Italy, and by the project “GIÒ: a Fog computing testbed for research & education”, funded by the Department of Computer Science of the University of Pisa, Italy.


  1. 1.
    Cloud key marketing trends for 2017 and ideas for exceeding customer expectations, IBM Marketing (2017)Google Scholar
  2. 2.
  3. 3.
    bmon - portable bandwidth monitor.
  4. 4.
    Hyperic’s system information gatherer (sigar).
  5. 5.
  6. 6.
  7. 7.
    Zenoss (2014).
  8. 8.
    Barth, W.: Nagios: System and Network Monitoring. No Starch Press, San Francisco (2008)Google Scholar
  9. 9.
    Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). Scholar
  10. 10.
    Brandón, Á., Pérez, M.S., Montes, J., Sanchez, A.: Fmone: a flexible monitoring solution at the edge. Wirel. Commun. Mob. Comput. 2018, 15 (2018)CrossRefGoogle Scholar
  11. 11.
    Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog-State of the Art and Open Challenges. preprint arXiv:1901.05717 (2019)
  12. 12.
    Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, probably. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 105–114. IEEE (2017)Google Scholar
  13. 13.
    Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the Fog: an active learning lab with Fog computing. In: 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), pp. 79–86. IEEE (2018)Google Scholar
  14. 14.
    Buyya, R., et al.: A manifesto for future generation cloud computing: research directions for the next decade. ACM Comput. Surv. (CSUR) 51(5), 105 (2018)CrossRefGoogle Scholar
  15. 15.
    CISCO: the internet of things: Extend the cloud to where the things are. Cisco White Paper (2015)Google Scholar
  16. 16.
    Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with lattice. In: 2010 IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS Wksps), pp. 239–246. IEEE (2010)Google Scholar
  17. 17.
    Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize its potential. Computer 49(8), 112–116 (2016)CrossRefGoogle Scholar
  18. 18.
    Du, W., Liao, Y., Tao, N., Geurts, P., Fu, X., Leduc, G.: Rating network paths for locality-aware overlay construction and routing. IEEE/ACM Trans. Networking (TON) 23(5), 1661–1673 (2015)CrossRefGoogle Scholar
  19. 19.
    Forti, S., Ibrahim, A., Brogi, A.: Mimicking FogDirector application management. Software-Intensive Cyber-Phys. Syst. 34(2–3), 151–161 (2019)CrossRefGoogle Scholar
  20. 20.
    Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth estimation. In: 2009 Fourth International Conference on Internet Monitoring and Protection, ICIMP 2009, pp. 130–136. IEEE (2009)Google Scholar
  21. 21.
    Hu, N.: Network monitoring and diagnosis based on available bandwidth measurement. Technical report, Carnegie-Mellon University, Pittsburgh, PA School of Computer Science (2006)Google Scholar
  22. 22.
    Issariyapat, C., Pongpaibool, P., Mongkolluksame, S., Meesublak, K.: Using Nagios as a groundwork for developing a better network monitoring system. In: 2012 Proceedings of PICMET 2012 Technology Management for Emerging Technologies (PICMET), pp. 2771–2777. IEEE (2012)Google Scholar
  23. 23.
    Jelasity, M.: Gossip. In: Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.) Self-organising Software. NCS, pp. 139–162. Springer, Berlin (2011). Scholar
  24. 24.
    Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-aware superpeer overlay topologies. IEEE Trans. Netw. Serv. Manag. 4(2), 74–83 (2007)CrossRefGoogle Scholar
  25. 25.
    Liao, Y., Du, W., Geurts, P., Leduc, G.: DMFSGD: a decentralized matrix factorization algorithm for network distance prediction. IEEE/ACM Trans. Networking (TON) 21(5), 1511–1524 (2013)CrossRefGoogle Scholar
  26. 26.
    Marttinen, A., et al.: Estimating kpis in deployed heterogeneous networks. IEEE Commun. Mag. 54(10), 158–165 (2016)CrossRefGoogle Scholar
  27. 27.
    Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)CrossRefGoogle Scholar
  28. 28.
    Mongkolluksamee, S., Pongpaibool, P., Issariyapat, C.: Strengths and limitations of Nagios as a network monitoring solution. In: Proceedings of the 7th International Joint Conference on Computer Science and Software Engineering (JCSSE 2010), Bangkok, Thailand. pp. 96–101 (2010)Google Scholar
  29. 29.
    Montes, J., Sánchez, A., Memishi, B., Pérez, M.S., Antoniu, G.: GMonE: a complete approach to cloud monitoring. Future Gener. Comput. Syst. 29(8), 2026–2040 (2013)CrossRefGoogle Scholar
  30. 30.
    Noghabi, S.A., Kolb, J., Bodik, P., Cuervo, E.: Steel: Simplified development and deployment of edge-cloud applications. In: 10th \(\{\)USENIX\(\}\) Workshop on Hot Topics in Cloud Computing (HotCloud 18) (2018)Google Scholar
  31. 31.
    Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini, L.: Dargos: a highly adaptable and scalable monitoring architecture for multi-tenant clouds. Future Gener. Comput. Syst. 29(8), 2041–2056 (2013)CrossRefGoogle Scholar
  32. 32.
    Rahimi, M.R., Ren, J., Liu, C.H., Vasilakos, A.V., Venkatasubramanian, N.: Mobile cloud computing: a survey, state of art and future directions. Mobile Networks Appl. 19(2), 133–143 (2014)CrossRefGoogle Scholar
  33. 33.
    Satyanarayanan, M., et al.: Edge analytics in the internet of things. IEEE Pervasive Comput. 14(2), 24–31 (2015)CrossRefGoogle Scholar
  34. 34.
    Simmonds, E., Harrington, J.: SCF/FEF Evaluation of Nagios and Zabbix Monitoring Systems, pp. 1–9 (2009)., cited By: 2
  35. 35.
    Skarlat, O., Bachmann, K., Schulte, S.: Fogframe: Iot service deployment and execution in the fog. KuVS-Fachgespräch Fog Comput. 1, 5–8 (2018)Google Scholar
  36. 36.
    Song, Y., Yau, S.S., Yu, R., Zhang, X., Xue, G.: An approach to QoS-based task distribution in edge computing networks for IoT applications. In: 2017 IEEE International Conference on Edge Computing (EDGE), pp. 32–39. IEEE (2017)Google Scholar
  37. 37.
    Souza, A., Cacho, N., Noor, A., Jayaraman, P.P., Romanovsky, A., Ranjan, R.: Osmotic monitoring of microservices between the edge and cloud. In: 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 758–765 (2018)Google Scholar
  38. 38.
    Tader, P.: Server monitoring with zabbix. Linux J. 2010(195), 7 (2010)Google Scholar
  39. 39.
    Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-adaptive applications within edge computing frameworks: a state-of-the-art review. J. Syst. Softw. 136, 19–38 (2018)CrossRefGoogle Scholar
  40. 40.
    Vögler, M., Schleicher, J.M., Inzinger, C., Dustdar, S.: Diane-dynamic IoT application deployment. In: 2015 IEEE International Conference on Mobile Services, pp. 298–305. IEEE (2015)Google Scholar
  41. 41.
    Wöbker, C., Seitz, A., Mueller, H., Bruegge, B.: Fogernetes: deployment and management of fog computing applications. In: NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–7. IEEE (2018)Google Scholar
  42. 42.
    Xie, K., et al.: Sequential and adaptive sampling for matrix completion in network monitoring systems. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 2443–2451. IEEE (2015)Google Scholar
  43. 43.
    Yip, M.: Rapidjson-a fast json parser/generator for c++ with both sax/dom style api. THL A29. (2015)
  44. 44.
    Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Brogi
    • 1
  • Stefano Forti
    • 1
    Email author
  • Marco Gaglianese
    • 1
  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations