Skip to main content

Modified Asymptotic Method of Studying the Mathematical Model of Nonlinear Oscillations Under the Impact of a Moving Environment

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

Wave theory of movement is used to study the mathematical model of a physical system which describes oscillations of a one-dimensional elastic body under the impact of a moving continuous flow of a homogeneous environment. This model accounts for nonlinear elastic properties of the body at transverse oscillations, as well as environment density and movement velocity. Oscillation amplitude and frequency variation laws in nonresonant modes and under the impact of harmonic perturbation are obtained. Variation laws of the aforesaid parameters are defined by geometrical characteristics of the elastic body, physical and mechanical properties of the material, the velocity of the moving environment, the angular velocity of elastic body rotation, and external factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magrab, E.B.: An Engineer’s Guide to Mathematica. Wiley, Hoboken (2014)

    Google Scholar 

  2. Jones, D.I.G.: Handbook of Viscoelastic Vibration Damping. Wiley, Hoboken (2001)

    Google Scholar 

  3. Sobotka, Z.: Theory of Plasticity and Limit Design of Plates. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  4. Chen, L.-Q., Yang, X.-D., Cheng, C.-J.: Dynamic stability of an axially moving viscoelastic beam. Eur. J. Mech. A/Solids 23, 659–666 (2004)

    Article  Google Scholar 

  5. Hatami, S., Azhari, M., Saadatpour, M.M.: Free vibration of moving laminated composite plates. Compos. Struct. 80, 609–620 (2007)

    Article  Google Scholar 

  6. Banichuk, N., Jeronen, J., Neittaanmaki, P., Tuovinen, T.: Static instability analysis for traveling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26, 274–291 (2010)

    Article  Google Scholar 

  7. Czaban, A., Szafraniec, A., Levoniuk, V.: Mathematical modelling of transient processes in power systems considering effect of high-voltage circuit breakers. Przeglad Elektro-techniczny 95(1), 49–52 (2019)

    Google Scholar 

  8. Mockersturm, E.M., Guo, J.: Nonlinear vibration of parametrically excited, visco-elastic, axially moving strings. J. Appl. Mech. ASME 72, 374–380 (2005)

    Article  Google Scholar 

  9. Kuttler, K.L., Renard, Y., Shillor, M.: Models and simulations of dynamic frictional contact. Comput. Methods Appl. Mech. Engrg. 177, 259–272 (1999)

    Article  MathSciNet  Google Scholar 

  10. Lim, C.W., Li, C., Yu, J.-L.: Dynamic behaviour of axially moving nanobeams based on non-local elasticity approach. Acta Mech. Sinica 26, 755–765 (2010)

    Article  MathSciNet  Google Scholar 

  11. Wickert, J.A., Mote Jr., C.D.: Classical vibration analysis of axially-moving continua. J. Appl. Mech. ASME 57, 738–744 (1990)

    Article  Google Scholar 

  12. Pukach, P.Ya., Kuzio, I.V.: Nonlinear transverse vibrations of semiinfinite cable with consideration paid to resistance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 3, pp. 82–86 (2013)

    Google Scholar 

  13. Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P.: On the asymptotic methods of the mathematical models of strongly nonlinear physical systems. In: Advances in Intelligent Systems and Computing, vol. 689, pp. 421–433 (2018)

    Google Scholar 

  14. Lavrenyuk, S.P., Pukach, P.Ya.: Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables. Ukrainian Math. J. 59, no. 11, pp. 1708–1718 (2007)

    Google Scholar 

  15. Buhrii, O.M.: Visco-plastic, newtonian, and dilatant fluids: stokes equations with variable exponent of nonlinearity. Matematychni Studii, vol. 49, no. 2, pp. 165–180 (2018)

    Google Scholar 

  16. Nytrebych, Z., Malanchuk, O., Il’kiv, V., Pukach, P.: On the solvability of two-point in time problem for PDE. Italian J. Pure Appl. Math. 38, 715–726 (2017)

    Google Scholar 

  17. Pukach, P.: Investigation of bending vibrations in Voigt-Kelvin bars with regard for non-linear resistance forces. J. Math. Sci. 215(1), 71–78 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  19. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  20. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  Google Scholar 

  21. Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie/ Chapman and Hall, London (1995)

    Google Scholar 

  22. Gao, X.-L., Park, S.K.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift furangewandte Mathematik und Physik 59, 904–917 (2008)

    Article  MathSciNet  Google Scholar 

  23. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Reddy-Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  24. Belmas, I.V., Kolosov, D.L., Kolosov, A.L., Onyshchenko, S.V.: Stress-strain state of rubber-cable tractive element of tubular shape. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 2, pp. 60–69 (2018)

    Google Scholar 

  25. Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42, 577–587 (2007)

    Article  Google Scholar 

  26. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  27. Nayfeh, A.H., Mook, D.T.: Non-Linear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  28. Pain, H.J.: The Physics of Vibration and Waves, 6th edn. Wiley, New York (2005)

    Book  Google Scholar 

  29. Chen, L.-Q., Chen, H.: Asymptotic analysis of nonlinear vibration of axially accelerating visco-elastic strings with the standard linear solid model. J. Eng. Math. 67, 205–218 (2010)

    Article  Google Scholar 

  30. Bayat, M., Barari, A., Shahidi, M.: Dynamic response of axially loaded Euler-Bernoulli beams. Mechanika 17(2), 172–177 (2011)

    Article  Google Scholar 

  31. Teslyuk, V.M.: Models and Information Technologies of Micro-electromechanical Systems Synthesis. Vezha and Кo, Lviv (2008)

    Google Scholar 

  32. Nytrebych, Z., Il’kiv, V., Pukach, P., Malanchuk, O.: On nontrivial solutions of homogeneous Dirichlet problem for partial differential equations in a layer. Kragujevac J. Mathem. 42(2), 193–207 (2018)

    Google Scholar 

  33. Pukach, P.Ya., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 69–76 (2017)

    Google Scholar 

  34. Pukach, P.Ya., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Asymptotic method for investigating resonant regimes of non–linear bending vibrations of elastic shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1, 68–73 (2018)

    Article  Google Scholar 

  35. Kauderer, H.: Nonlinear Mechanics. Izdatelstvo Inostrannoy Literatury, Moscow (1961). (in Russian)

    Google Scholar 

  36. Pukach, P., Nytrebych, Z., Ilkiv, V., Vovk, M., Pukach, Yu.: On the mathematical model of nonlinear oscillations under the impact of a moving environment. In: Proceedings of International scientific conference Computer sciences and information technologies (CSIT-2019), vol. 1, pp. 71–74 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petro Pukach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2020). Modified Asymptotic Method of Studying the Mathematical Model of Nonlinear Oscillations Under the Impact of a Moving Environment. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_7

Download citation

Publish with us

Policies and ethics