Abstract
Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimizing without the network-based initialization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural networks. In: Proceedings of International Conference on Machine Learning (2017)
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Proceedings of International Conference on Neural Information Processing Systems (NIPS) (2016)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of SIGGRAPH, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999). https://doi.org/10.1145/311535.311556
Chan, W.L., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Rep. Prog. Phys. 70(8), 1325 (2007)
Chang, J.H., Li, C.L., Poczos, B., Kumar, B.V., Sankaranarayanan, A.: One network to solve them all – solving linear inverse problems using deep projection models. In: Proceedings of IEEE International Conference on Computer Vision (2017)
Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)
Cooper, K.B., Dengler, R.J., Llombart, N., Thomas, B., Chattopadhyay, G., Siegel, P.H.: THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011)
Ding, J., Kahl, M., Loffeld, O., Haring Bolívar, P.: THz 3-D image formation using sar techniques: simulation, processing and experimental results. IEEE Trans. Terahertz Sci.Technol. 3(5), 606–616 (2013)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
Heckel, R., Hand, P.: Deep decoder: Concise image representations from untrained non-convolutional networks. In: International Conference on Learning Representations (2019)
Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning (2015)
Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., Krumbholz, N., Jördens, C., Hochrein, T., Koch, M.: Terahertz imaging: applications and perspectives. Appl. Opt. 49(19), E48–E57 (2010)
Kahl, M., et al.: Stand-off real-time synthetic imaging at mm-wave frequencies. In: Passive and Active Millimeter-Wave Imaging XV. vol. 8362, p. 836208 (2012)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational methods and deep learning. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 281–293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_23
Long, Z., Wang, T., You, C., Yang, Z., Wang, K., Liu, J.: Terahertz image super-resolution based on a deep convolutional neural network. Appl. Opt. 58(10), 2731–2735 (2019)
McClatchey, K., Reiten, M., Cheville, R.: Time resolved synthetic aperture terahertz impulse imaging. Appl. Phys. Lett. 79(27), 4485–4487 (2001)
Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: Proceedings of IEEE International Conference on Computer Vision (2017)
Moeller, M., Möllenhoff, T., Cremers, D.: Controlling neural networks via energy dissipation (2019). https://arxiv.org/abs/1904.03081
Munson, D.C., Visentin, R.L.: A signal processing view of strip-mapping synthetic aperture radar. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2131–2147 (1989)
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)
Plötz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)
Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(7), 1439–1451 (2016)
Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)
Skolnik, M.I.: Radar Handbook. McGraw-Hill Book Co., New York (1970)
Standard, M.: Photographic lenses (1959). http://www.dtic.mil/dtic/tr/fulltext/u2/a345623.pdf
Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of IEEE International Conference on Computer Vision (2017)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2018)
Wong, T.M., Kahl, M., Haring Bolívar, P., Kolb, A.: Computational image enhancement for frequency modulated continuous wave (FMCW) THz image. J. Infrared Millimeter Terahertz Waves 40(7), 775–800 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wong, T.M., Kahl, M., Haring-Bolívar, P., Kolb, A., Möller, M. (2019). Training Auto-Encoder-Based Optimizers for Terahertz Image Reconstruction. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-33676-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33675-2
Online ISBN: 978-3-030-33676-9
eBook Packages: Computer ScienceComputer Science (R0)