Dynamic Classifier Chains for Multi-label Learning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11824)


In this paper, we deal with the task of building a dynamic ensemble of chain classifiers for multi-label classification. To do so, we proposed two concepts of the classifier chain algorithms that are able to change the label order of the chain without rebuilding the entire model. Such models allow anticipating the instance-specific chain order without the significant increase in the computational burden. The proposed chain models are built using the Naive Bayes classifier and nearest neighbour approaches. To take the benefits of the proposed algorithms, we developed a simple heuristic that allows the system to find relatively good label order. The experimental results showed that the proposed models and the heuristic are efficient tools for building dynamic chain classifiers.


Multi-label Classifier chains Naive Bayes Dynamic chains Nearest neighbour 



This work is financed from Grant For Young Scientists and PhD Students Development, under agreement: 0402/0109/18.

Supplementary material

480714_1_En_40_MOESM1_ESM.pdf (117 kb)
Supplementary material 1 (pdf 116 KB)


  1. 1.
    Alvares Cherman, E., Metz, J., Monard, M.C.: A simple approach to incorporate label dependency in multi-label classification. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010. LNCS (LNAI), vol. 6438, pp. 33–43. Springer, Heidelberg (2010). Scholar
  2. 2.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Quinta: a question tagging assistant to improve the answering ratio in electronic forums. In: IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON). IEEE, September 2015.
  3. 3.
    Chen, B., Li, W., Zhang, Y., Hu, J.: Enhancing multi-label classification based on local label constraints and classifier chains. In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2016.
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). Scholar
  5. 5.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967). Scholar
  6. 6.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dhar, M.: On cardinality of fuzzy sets. Int. J. Intell. Syst. Appl. 5(6), 47–52 (2013). Scholar
  8. 8.
    Garcí, V., Sánchez, J., Mollineda, R.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl.-Based Syst. 25(1), 13–21 (2012). Scholar
  9. 9.
    Gibaja, E., Ventura, S.: Multi-label learning: a review of the state of the art and ongoing research. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 4(6), 411–444 (2014). Scholar
  10. 10.
    Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. IEEE, November 2013.
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software. ACM SIGKDD Explor. Newslett. 11(1), 10 (2009). Scholar
  12. 12.
    Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)Google Scholar
  13. 13.
    Hand, D.J., Yu, K.: Idiot’s Bayes: not so stupid after all? Int. Stat. Rev./Revue Internationale de Statistique 69(3), 385 (2001). Scholar
  14. 14.
    Huang, J., Li, G., Wang, S., Zhang, W., Huang, Q.: Group sensitive classifier chains for multi-label classification. In: 2015 IEEE International Conference on Multimedia and Expo (ICME). IEEE, June 2015.
  15. 15.
    Liu, X., Shi, Z., Li, Z., Wang, X., Shi, Z.: Sorted label classifier chains for learning images with multi-label. In: Proceedings of the International Conference on Multimedia - MM 2010. ACM Press (2010).
  16. 16.
    Luaces, O., Díez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary relevance efficacy for multilabel classification. Progress in Artif. Intell. 1(4), 303–313 (2012). Scholar
  17. 17.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012). Scholar
  18. 18.
    Montañes, E., et al.: Dependent binary relevance models for multi-label classification. Pattern Recogn. 47(3), 1494–1508 (2014). Scholar
  19. 19.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  20. 20.
    Read, J., Martino, L., Luengo, D.: Efficient Monte Carlo methods for multi-dimensional learning with classifier chains. Pattern Recogn. 47(3), 1535–1546 (2014). Scholar
  21. 21.
    Read, J., Peter, R.: (2017).
  22. 22.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011). Scholar
  23. 23.
    da Silva, P.N., Gonçalves, E.C., Plastino, A., Freitas, A.A.: Distinct chains for different instances: an effective strategy for multi-label classifier chains. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 453–468. Springer, Heidelberg (2014). Scholar
  24. 24.
    Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016). Scholar
  25. 25.
    Tomás, J.T., Spolaôr, N., Cherman, E.A., Monard, M.C.: A framework to generate synthetic multi-label datasets. Electron. Notes Theoret. Comput. Sci. 302, 155–176 (2014). Scholar
  26. 26.
    Trajdos, P., Kurzynski, M.: Naive bayes classifier for dynamic chaining approach in multi-label learning. Int. J. Educ. Learn. Syst. 2, 133–142 (2017)Google Scholar
  27. 27.
    Trajdos, P., Kurzynski, M.: Permutation-based diversity measure for classifier-chain approach. In: Kurzynski, M., Wozniak, M., Burduk, R. (eds.) CORES 2017. AISC, vol. 578, pp. 412–422. Springer, Cham (2018). Scholar
  28. 28.
    Wu, J.S., Huang, S.J., Zhou, Z.H.: Genome-wide protein function prediction through multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 891–902 (2014). Scholar
  29. 29.
    Xu, J.: Fast multi-label core vector machine. Pattern Recogn. 46(3), 885–898 (2013). Scholar
  30. 30.
    Zhang, P., Yang, Y., Zhu, X.: Approaching multi-dimensional classification by using Bayesian network chain classifiers. In: 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE, August 2014.
  31. 31.
    Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance multi-label learning. Artif. Intell. 176(1), 2291–2320 (2012). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations