Skip to main content

Exploring the Relationship Between Segmentation Uncertainty, Segmentation Performance and Inter-observer Variability with Probabilistic Networks

  • Conference paper
  • First Online:
Book cover Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention (LABELS 2019, HAL-MICCAI 2019, CuRIOUS 2019)

Abstract

Medical image segmentation is an essential tool for clinical decision making and treatment planning. Automation of this process led to significant improvements in diagnostics and patient care, especially after recent breakthroughs that have been triggered by deep learning. However, when integrating automatic tools into patient care, it is crucial to understand their limitations and to have means to assess their confidence for individual cases. Aleatoric and epistemic uncertainties have been subject of recent research. Methods have been developed to calculate these quantities automatically during segmentation inference. However, it is still unclear how much human factors affect these metrics. Varying image quality and different levels of human annotator expertise are an integral part of aleatoric uncertainty. It is unknown how much this variability affects uncertainty in the final segmentation. Thus, in this work we explore potential links between deep network segmentation uncertainties with inter-observer variance and segmentation performance. We show how the area of disagreement between different ground-truth annotators can be developed into model confidence metrics and evaluate them on the LIDC-IDRI dataset, which contains multiple expert annotations for each subject. Our results indicate that a probabilistic 3D U-Net and a 3D U-Net using Monte-Carlo dropout during inference both show a similar correlation between our segmentation uncertainty metrics, segmentation performance and human expert variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armato III, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Fox, C.R., Rottenstreich, Y.: Partition priming in judgment under uncertainty. Psychol. Sci. 14(3), 195–200 (2003)

    Article  Google Scholar 

  4. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning, ICML 2016 (2016)

    Google Scholar 

  5. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 1183–1192 (2017)

    Google Scholar 

  6. Huang, L., Pashler, H.: Symmetry detection and visual attention: a “binary-map” hypothesis. Vis. Res. 42(11), 1421–1430 (2002)

    Article  Google Scholar 

  7. Jungo, A., et al.: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 682–690. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_77

    Chapter  Google Scholar 

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  9. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: British Machine Vision Conference 2017, BMVC 2017, London, UK, 4–7 September 2017 (2017)

    Google Scholar 

  10. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 6965–6975 (2018)

    Google Scholar 

  11. Mobiny, A., Nguyen, H.V., Moulik, S., Garg, N., Wu, C.C.: DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks. arXiv preprint arXiv:1906.04569 (2019)

  12. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 655–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_74

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C.: Inherent brain segmentation quality control from fully ConvNet Monte Carlo sampling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 664–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_75

    Chapter  Google Scholar 

  15. Sakaridis, C., Dai, D., Van Gool, L.: Semantic nighttime image segmentation with synthetic stylized data, gradual adaptation and uncertainty-aware evaluation. arXiv preprint arXiv:1901.05946 (2019)

  16. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example detection. In: Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, 6–10 August 2018, pp. 560–569 (2018)

    Google Scholar 

  17. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  18. Wang, S., et al.: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med. Image Anal. 40, 172–183 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Chotzoglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chotzoglou, E., Kainz, B. (2019). Exploring the Relationship Between Segmentation Uncertainty, Segmentation Performance and Inter-observer Variability with Probabilistic Networks. In: Zhou, L., et al. Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. LABELS HAL-MICCAI CuRIOUS 2019 2019 2019. Lecture Notes in Computer Science(), vol 11851. Springer, Cham. https://doi.org/10.1007/978-3-030-33642-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33642-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33641-7

  • Online ISBN: 978-3-030-33642-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics